On a nonlocal boundary value problem for a model hyperbolic nonlocal equations
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 7-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the problem with internal-boundary non-characteristic displacement for a model heavily loaded second-order hyperbolic type equation with two independent variables. We emphasize that for loaded hyperbolic equations with the load being characteristic, the main initial and boundary value problems are formulated as well as for ordinary equations. But if we deal with a non-characteristic load, then the task is reduced to the correct choice among the manyfold inherent in the initial, boundary, and mixed data. An analogue of the mean value theorem and an analogue of the d'Alembert formula are given. To solve the problem, the d0Alembert method is used.
Keywords: heavily loaded differential equation, internal-boundary noncharacteristic displacement, mean value theorem, d′Alembert′s method, functional equation, characteristics of a hyperbolic equation.
@article{VKAM_2022_40_3_a0,
     author = {A. Kh. Attaev},
     title = {On a nonlocal boundary value problem for a model hyperbolic nonlocal equations},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--15},
     year = {2022},
     volume = {40},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/}
}
TY  - JOUR
AU  - A. Kh. Attaev
TI  - On a nonlocal boundary value problem for a model hyperbolic nonlocal equations
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 7
EP  - 15
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/
LA  - ru
ID  - VKAM_2022_40_3_a0
ER  - 
%0 Journal Article
%A A. Kh. Attaev
%T On a nonlocal boundary value problem for a model hyperbolic nonlocal equations
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 7-15
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/
%G ru
%F VKAM_2022_40_3_a0
A. Kh. Attaev. On a nonlocal boundary value problem for a model hyperbolic nonlocal equations. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 7-15. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/

[1] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp.

[2] Dzhenaliev M. T., Romazanov M. I., Nagruzhennye uravneniya kak vozmuschenie differentsialnykh uravnenii, Amaty, 2010, 336 pp.

[3] Nakhushev A. M., “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108

[4] Nakhushev A. M., “O zadache Darbu dlya giperbolicheskikh uravnenii”, Doklady AN SSSR, 195:4 (1970), 776–779

[5] Attaev A. Kh., “Zadacha s dannymi na parallelnykh kharakteristikakh dlya nagruzhennogo volnovogo uravneniya”, Doklady AMAN, 10:2 (2008), 14–16

[6] Attaev A. Kh., “Zadacha Koshi dlya suschestvenno nagruzhennogo giperbolicheskogo uravneniya”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2021, no. 1(12), 5–12

[7] Attaev A. Kh., “Zadacha granichnogo upravleniya dlya nagruzhennogo uravneniya kolebaniya struny”, Differents. uravneniya, 2020, no. 56(5), 646–651

[8] Gogunokov Z. G., “Zadacha Gursa dlya nagruzhennogo giperbolicheskogo uravneniya vtorogo poryadka”, Doklady AMAN, 2000, no. 5(1), 20–23

[9] Kaziev V. M., “Zadacha Gursa dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya”, Differents. uravneniya, 1981, no. 2(17), 313–319

[10] Repin O.A., Tarasenko A.V., “Zadacha Gursa i Darbu dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Matematicheskii zhurnal, 2011, no. 2(11), 64–72

[11] Ogorodnikov E. N., “Nekotorye kharakteristicheskie zadachi dlya sistem nagruzhennykh differentsialnykh uravnenii i ikh svyaz s nelokalnymi kraevymi zadachami”, Vestnik SamGTU. Seriya: Fiz.-mat. nauki, 2003, no. 19, 22–28