On a nonlocal boundary value problem for a model hyperbolic nonlocal equations
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 7-15
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper studies the problem with internal-boundary non-characteristic displacement for a model heavily loaded second-order hyperbolic type equation with two independent variables. We emphasize that for loaded hyperbolic equations with the load being characteristic, the main initial and boundary value problems are formulated as well as for ordinary equations. But if we deal with a non-characteristic load, then the task is reduced to the correct choice among the manyfold inherent in the initial, boundary, and mixed data. An analogue of the mean value theorem and an analogue of the d'Alembert formula are given. To solve the problem, the d0Alembert method is used.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
heavily loaded differential equation, internal-boundary noncharacteristic displacement, mean value theorem, d′Alembert′s method, functional equation, characteristics of a hyperbolic equation.
                    
                  
                
                
                @article{VKAM_2022_40_3_a0,
     author = {A. Kh. Attaev},
     title = {On a nonlocal boundary value problem for a model hyperbolic nonlocal equations},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/}
}
                      
                      
                    TY - JOUR AU - A. Kh. Attaev TI - On a nonlocal boundary value problem for a model hyperbolic nonlocal equations JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 7 EP - 15 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/ LA - ru ID - VKAM_2022_40_3_a0 ER -
A. Kh. Attaev. On a nonlocal boundary value problem for a model hyperbolic nonlocal equations. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 40 (2022) no. 3, pp. 7-15. http://geodesic.mathdoc.fr/item/VKAM_2022_40_3_a0/