Optimization of the structure of variable-valued logical functions when adding new production rules
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 119-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes a theoretical justification and practical implementation in the form of an algorithm for modifying variable-valued unions of functions when adding new production rules to an already formed (within the original subject area) union classifier. The proposed algorithm is based on the application of the method of constructive transformation of variable-valued relationships of classifiers built on the basis of a system of production rules encoded using variable-valued predicates. The properties of changing the structure of production clauses and knowledge development clauses in the process of adding new production rules are studied. Conditions are found under which these clauses are guaranteed to vanish in the connection, or are in a constant form. Taking into account the conditions in the proposed algorithm makes it possible to reduce the number of necessary operations and reduce the computational costs for the required transformations
Keywords: combination of operations, variable-valued predicate, variablevalued logical function, training sample, mixed classifier, logical neural network.
Mots-clés : production rule
@article{VKAM_2022_39_2_a8,
     author = {D. P. Dimitrichenko},
     title = {Optimization of the structure of variable-valued logical functions when adding new production rules},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {119--135},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/}
}
TY  - JOUR
AU  - D. P. Dimitrichenko
TI  - Optimization of the structure of variable-valued logical functions when adding new production rules
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 119
EP  - 135
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/
LA  - ru
ID  - VKAM_2022_39_2_a8
ER  - 
%0 Journal Article
%A D. P. Dimitrichenko
%T Optimization of the structure of variable-valued logical functions when adding new production rules
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 119-135
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/
%G ru
%F VKAM_2022_39_2_a8
D. P. Dimitrichenko. Optimization of the structure of variable-valued logical functions when adding new production rules. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 119-135. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/

[1] Khaikin S., Neironnye seti: polnyi kurs, Izdatelskii dom Vilyams, M., 2008, 1103 pp.

[2] Shibzukhov Z. M., Konstruktivnye metody obucheniya neironnykh setei, Nauka, M., 2006, 159 pp.

[3] Riazanov V. V., Sen'ko O. V., Zhuravlev Y. I., “Mathematical methods for pattern recognition: logic, optimization, algebraic approaches”, Proceedings. Fourteenth International Conference on Pattern Recognition, 1 (1998), 831–834, DOI: 10.1109/ICPR.1998.711278

[4] Uddin M. F., Rizvi S., Razaque A., “Proposing Logical Table Constructs for Enhanced Machine Learning Process”, in IEEE Access, 6 (2018), 47751–47769, DOI: 10.1109/ACCESS.2018.2866046

[5] Sathe J. B., Mali M. P., “A hybrid Sentiment Classification method using Neural Network and Fuzzy Logic”, 2017 11th International Conference on Intelligent Systems and Control (ISCO), 2017, 93–96, DOI: 10.1109/ISCO.2017.7855960

[6] Kamada S., Ichimura T., “An Object Detection by using Adaptive Structural Learning of Deep Belief Network”, 2019 International Joint Conference on Neural Networks (IJCNN), 2019, 1–8, DOI: 10.1109/IJCNN.2019.8852145

[7] Gao X., Yang T., Peng J., “Logic-Enhanced Adaptive Network-Based Fuzzy Classifier for Fall Recognition in Rehabilitation”, in IEEE Access, 8 (2020), 57105–57113, DOI: 10.1109/ACCESS.2020.2982049

[8] Cpalka K., “A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems”, in IEEE Transactions on Neural Networks, 20:4 (2009), 701–714, DOI: 10.1109/TNN.2009.2012425

[9] Eiamkanitchat N., Theera-Umpon N., Auephanwiriyakul S., “A novel neuro-fuzzy method for linguistic feature selection and rule-based classification”, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, 247–252, DOI: 10.1109/ICCAE.2010.5451487

[10] Efanov D., Osadchy G., Zueva M., “Specifics of Error Detection with Modular Sum Codes in Concurrent Error-Detection Circuits Based on Boolean Complement Method”, 2021 IEEE East-West Design and Test Symposium (EWDTS), 2021, 1-–11, DOI: 10.1109/EWDTS52692.2021.9581036

[11] Gebreyohannes S., Edmonson W., Esterline A., Homaifar A., Kibret N., “Fuzzy classification context for the responsive and formal design process”, 2017 Annual IEEE International Systems Conference (SysCon), 2017, 1–8, DOI: 10.1109/SYSCON.2017.7934797

[12] Jean-Marc B., Lafitte O., “Combining weak classifiers: a logical analysis”, 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2021, 178–181, DOI: 10.1109/SYNASC54541.2021.00038

[13] Lyutikova L. A., Modelirovanie i minimizatsiya baz znanii v terminakh mnogoznachnoi logiki predikatov, Preprint, Nalchik, 2006, 33 pp.

[14] Lyutikova L. A., “Using multivalued logic for qualitative data analysis”, Journal of Physics: Conference Series, 2131:3 (2021), 032046

[15] Lyutikova L. A., Shmatova E. V., “Logicheskii analiz korrektiruyuschikh operatsii dlya postroeniya kachestvennogo algoritma raspoznavaniya”, Programmnye produkty i sistemy, 113:1 (2016), 108–112

[16] Dimitrichenko D. P., “Ispolzovanie neironnykh setei dlya povysheniya effektivnosti peremennoznachnykh logicheskikh funktsii”, Vestnik IrGTU, 105:10 (2015), 12–16

[17] Dimitrichenko D. P., “Primenenie peremennoznachnykh logicheskikh funktsii i neironnykh setei v sistemakh prinyatiya reshenii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 16:4-1 (2016), 93–100

[18] Barskii A. B., Neironnye seti: raspoznavanie, upravlenie, prinyatie reshenii, Finansy i statistika, M., 2004, 176 pp.

[19] Barskii A. B., Logicheskie neironnye seti, Internet-Universitet Informatsionnykh Tekhnologii, 2007, 352 pp.

[20] Gorbatov V. A., Fundamentalnye osnovy diskretnoi matematiki. Informatsionnaya matematika, Nauka, M., 2000, 541 pp.

[21] Dimitrichenko D. P., “A Method for Diagnosing a Robotic Complex Using Logical Neural Networks Apparatus”," 2021 International Russian Automation Conference (RusAutoCon), 907–911 DOI: 10.1109/RusAutoCon52004.2021.9537419

[22] Akho Alfred V., Khopkroft Dzhon E., Ulman Dzheffri D., Struktury dannykh i algoritmy, Vilyams, M., 2000, 400 pp.