Mots-clés : production rule
@article{VKAM_2022_39_2_a8,
author = {D. P. Dimitrichenko},
title = {Optimization of the structure of variable-valued logical functions when adding new production rules},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {119--135},
year = {2022},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/}
}
TY - JOUR AU - D. P. Dimitrichenko TI - Optimization of the structure of variable-valued logical functions when adding new production rules JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 119 EP - 135 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/ LA - ru ID - VKAM_2022_39_2_a8 ER -
%0 Journal Article %A D. P. Dimitrichenko %T Optimization of the structure of variable-valued logical functions when adding new production rules %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 119-135 %V 39 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/ %G ru %F VKAM_2022_39_2_a8
D. P. Dimitrichenko. Optimization of the structure of variable-valued logical functions when adding new production rules. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 119-135. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a8/
[1] Khaikin S., Neironnye seti: polnyi kurs, Izdatelskii dom Vilyams, M., 2008, 1103 pp.
[2] Shibzukhov Z. M., Konstruktivnye metody obucheniya neironnykh setei, Nauka, M., 2006, 159 pp.
[3] Riazanov V. V., Sen'ko O. V., Zhuravlev Y. I., “Mathematical methods for pattern recognition: logic, optimization, algebraic approaches”, Proceedings. Fourteenth International Conference on Pattern Recognition, 1 (1998), 831–834, DOI: 10.1109/ICPR.1998.711278
[4] Uddin M. F., Rizvi S., Razaque A., “Proposing Logical Table Constructs for Enhanced Machine Learning Process”, in IEEE Access, 6 (2018), 47751–47769, DOI: 10.1109/ACCESS.2018.2866046
[5] Sathe J. B., Mali M. P., “A hybrid Sentiment Classification method using Neural Network and Fuzzy Logic”, 2017 11th International Conference on Intelligent Systems and Control (ISCO), 2017, 93–96, DOI: 10.1109/ISCO.2017.7855960
[6] Kamada S., Ichimura T., “An Object Detection by using Adaptive Structural Learning of Deep Belief Network”, 2019 International Joint Conference on Neural Networks (IJCNN), 2019, 1–8, DOI: 10.1109/IJCNN.2019.8852145
[7] Gao X., Yang T., Peng J., “Logic-Enhanced Adaptive Network-Based Fuzzy Classifier for Fall Recognition in Rehabilitation”, in IEEE Access, 8 (2020), 57105–57113, DOI: 10.1109/ACCESS.2020.2982049
[8] Cpalka K., “A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems”, in IEEE Transactions on Neural Networks, 20:4 (2009), 701–714, DOI: 10.1109/TNN.2009.2012425
[9] Eiamkanitchat N., Theera-Umpon N., Auephanwiriyakul S., “A novel neuro-fuzzy method for linguistic feature selection and rule-based classification”, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, 247–252, DOI: 10.1109/ICCAE.2010.5451487
[10] Efanov D., Osadchy G., Zueva M., “Specifics of Error Detection with Modular Sum Codes in Concurrent Error-Detection Circuits Based on Boolean Complement Method”, 2021 IEEE East-West Design and Test Symposium (EWDTS), 2021, 1-–11, DOI: 10.1109/EWDTS52692.2021.9581036
[11] Gebreyohannes S., Edmonson W., Esterline A., Homaifar A., Kibret N., “Fuzzy classification context for the responsive and formal design process”, 2017 Annual IEEE International Systems Conference (SysCon), 2017, 1–8, DOI: 10.1109/SYSCON.2017.7934797
[12] Jean-Marc B., Lafitte O., “Combining weak classifiers: a logical analysis”, 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2021, 178–181, DOI: 10.1109/SYNASC54541.2021.00038
[13] Lyutikova L. A., Modelirovanie i minimizatsiya baz znanii v terminakh mnogoznachnoi logiki predikatov, Preprint, Nalchik, 2006, 33 pp.
[14] Lyutikova L. A., “Using multivalued logic for qualitative data analysis”, Journal of Physics: Conference Series, 2131:3 (2021), 032046
[15] Lyutikova L. A., Shmatova E. V., “Logicheskii analiz korrektiruyuschikh operatsii dlya postroeniya kachestvennogo algoritma raspoznavaniya”, Programmnye produkty i sistemy, 113:1 (2016), 108–112
[16] Dimitrichenko D. P., “Ispolzovanie neironnykh setei dlya povysheniya effektivnosti peremennoznachnykh logicheskikh funktsii”, Vestnik IrGTU, 105:10 (2015), 12–16
[17] Dimitrichenko D. P., “Primenenie peremennoznachnykh logicheskikh funktsii i neironnykh setei v sistemakh prinyatiya reshenii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 16:4-1 (2016), 93–100
[18] Barskii A. B., Neironnye seti: raspoznavanie, upravlenie, prinyatie reshenii, Finansy i statistika, M., 2004, 176 pp.
[19] Barskii A. B., Logicheskie neironnye seti, Internet-Universitet Informatsionnykh Tekhnologii, 2007, 352 pp.
[20] Gorbatov V. A., Fundamentalnye osnovy diskretnoi matematiki. Informatsionnaya matematika, Nauka, M., 2000, 541 pp.
[21] Dimitrichenko D. P., “A Method for Diagnosing a Robotic Complex Using Logical Neural Networks Apparatus”," 2021 International Russian Automation Conference (RusAutoCon), 907–911 DOI: 10.1109/RusAutoCon52004.2021.9537419
[22] Akho Alfred V., Khopkroft Dzhon E., Ulman Dzheffri D., Struktury dannykh i algoritmy, Vilyams, M., 2000, 400 pp.