@article{VKAM_2022_39_2_a7,
author = {A. F. Tsakhoeva and D. D. Shigin},
title = {Numerical implementation of a mathematical model {(SEIRD)} based on data from the spread of the fifth wave of {COVID-19} in russia and regions},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {103--118},
year = {2022},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a7/}
}
TY - JOUR AU - A. F. Tsakhoeva AU - D. D. Shigin TI - Numerical implementation of a mathematical model (SEIRD) based on data from the spread of the fifth wave of COVID-19 in russia and regions JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 103 EP - 118 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a7/ LA - ru ID - VKAM_2022_39_2_a7 ER -
%0 Journal Article %A A. F. Tsakhoeva %A D. D. Shigin %T Numerical implementation of a mathematical model (SEIRD) based on data from the spread of the fifth wave of COVID-19 in russia and regions %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 103-118 %V 39 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a7/ %G ru %F VKAM_2022_39_2_a7
A. F. Tsakhoeva; D. D. Shigin. Numerical implementation of a mathematical model (SEIRD) based on data from the spread of the fifth wave of COVID-19 in russia and regions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 103-118. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a7/
[1] Wilhelm A., Widera M., K. Grikscheit, Toptan T., Schenk B., Pallas C., Metzler M., Kohmer N., Hoehl S., Helfritz F. A., Wolf T., Goetsch U., Ciesek S., “Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and Monoclonal Antibodies”, medRxiv, 2021 DOI: 10.1101/2021.12.07.21267432
[2] Liu L., Iketani S., Guo Y.,Chan J. F.-W., Wang M., Liu L., Luo Y., Chu H., Huang Y., Nair M. S., Yu J., Chik K. K.-H., Yuen T. T.-T., Yoon C., To K. K.-W., Chen H., Yin M. T., Sobieszczyk M. E., Huang Y., Wang H. H., Sheng Z., Yuen K.-Y., Ho D. D., “Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2”, Nature, 602:7896 (2022), 676–-681 DOI: 10.1038/s41586-021-04388-0 | DOI
[3] Rössler A., Riepler L., Bante D., Dorothee von Laer, Kimpel J., “SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals”, New England Journal of Medicine, 386:7 (2022), 698–700 DOI: 10.1056/NEJMc21192362 | DOI
[4] Balcilar M., Bouri E., Gupta R., Roubaud D., “Can volume predict Bitcoin returns and volatility? A quantiles-based approach”, Economic Modelling, 64 (2017), 74–81 DOI: 10.1016/j.econmod.2017.03.019 | DOI
[5] Hirata Y., Aihara K., “Improving time series prediction of solar irradiance after sunrise: Comparison among three methods for time series prediction”, Solar Energy, 2017, 294–301 DOI: 10.1016/j.solener.2017.04.020 | DOI
[6] Chiyaka C., Garira W., Dube S., “Transmission model of endemic human malaria in a partially immune population”, Mathematical and Computer Modelling, 46:5 (2007), 806–822 DOI: 10.1016/j.mcm.2006.12.010 | DOI
[7] Danca M. F., Kuznetsov N., “Matlab code for Lyapunov exponents of fractional-order systems”, Int. J. Bifurcation Chaos Appl. Sci. Eng, 28:5 (2018), 14 DOI: 10.1142/S0218127418500670 | DOI
[8] Ögren P., Martin C. F., “Vaccination strategies for epidemics in highly mobile populations”, Applied Mathematics and Computation, 127:2 (2002), 261–276 DOI: 10.1016/S0096-3003(01)00004-2
[9] Kucharski A.J., Russell T.W., Diamond C., Liu Y., Edmunds J., Funk S., Eggo R.M., Sun F., Jit M., Munday J.D., et al., “Early dynamics of transmission and control of covid-19: a mathematical modelling study”, Lancet Infectious Diseases, 20:5 (2020), 553–558 DOI: 10.1016/S1473-3099(20)30144-4 | DOI
[10] Rajagopal K., Hasanzadeh N., Parastesh F. et al., “A fractional-order model for the novel coronavirus (COVID-19) outbreak”, Nonlinear Dynamics, 101:1 (2020), 711–718 DOI: 10.1007/s11071-020-05757-6 | DOI
[11] Anastassopoulou, Cleo AND Russo, Lucia AND Tsakris, Athanasios AND Siettos, Constantinos, “Data-based analysis, modelling and forecasting of the COVID-19 outbreak”, PLOS ONE, 15:3 (2020), 1–21 DOI: 10.1371/journal.pone.0230405 | DOI
[12] Casella, Francesco , “Can the COVID-19 Epidemic Be Controlled on the Basis of Daily Test Reports?”, IEEE Control Systems Letters, 5:3 (2021), 1079–1084 DOI: 10.1109/LCSYS.2020.3009912 | DOI
[13] Wu J.T., Leung K., Bushman M., Kishore N., Niehus R., P.M. de Salazar, Cowling B.J.,Lipsitch M., Leung G.M., “Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China”, Nature Medicine, 26:4 (2020), 506–510 DOI: 10.1038/s41591-020-0822-7 | DOI
[14] Joel Hellewell, Sam Abbott, Amy Gimma, Nikos I Bosse, Christopher I Jarvis, et al., “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts”, The Lancet Global Health, 8:4 (2020), 488–496 DOI: 10.1016/S2214-109X(20)30074-7
[15] Pskhu A. V., “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sib. elektron. matem. izv., 13 (2016), 1078–1098 | MR | Zbl
[16] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matem. sb., 202:4 (2011), 111–122 | MR | Zbl
[17] Wang, Wanting and Khan, Muhammad Altaf, “Analysis and numerical simulation of fractional model of bank data with fractal-fractional {Atangana}-{Baleanu} derivative”, Journal of Computational and Applied Mathematics, 369 (2020), 15 DOI: 10.1016/j.cam.2019.112646 | DOI
[18] Diethelm, Kai and Ford, Neville J., “Analysis of fractional differential equations”, Journal of Mathematical Analysis and Applications, 265:2 (2002), 229–248 | DOI
[19] Yu, Fajun, “Integrable coupling system of fractional soliton equation hierarchy”, Physics Letters. A, 373:41 (2009), 3730–3733 DOI: 10.1016/j.physleta.2009.08.017 | DOI
[20] Demirci, E., Unal, A., Ozalp, N, “A fractional order SEIR model with density dependent death rate”, Hacettepe journal of mathematics and statistics, 40 (2011), 287–295
[21] Lin W., “Global existence theory and chaos control of fractional differential equations”, Journal of Mathematical Analysis and Applications, 332:1 (2007), 709–726 DOI: 10.1016/j.jmaa.2006.12.036 | DOI
[22] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit , M., 2003 Zbl 10.1016/j.jmaa.2006.12.036
[23] Chicchi L., Patti F.D., Fanelli D., Piazza F., Ginelli F., “First results with a SEIRD model. Quantifying the population of asymptomatic individuals in Italy”, Part of the project “Analysis and forecast of COVID-19 spreading”, 2020
[24] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881