Modeling the growth of flat snow crystals in clouds with fractal structure
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 80-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a universal model is proposed to describe the growth process of flat round-shaped snow crystals in mixed-type clouds with a fractal structure. Snow crystals were chosen as the object of research, as they can have a significant impact on the weather conditions and climate of the Earth. In an analytical form, the solution of the equation of the model is found, in which the fractal property of the cloud environment is taken into account through a phenomenological parameter that determines the intensity of the growth of snow crystals using the fractional integro-differentiation apparatus. It is shown that the growth of snow crystals under sublimation and coagulation growth mechanisms mainly depends not only on temperature and water content, but also on the fractal parameter of the cloud environment. The snow crystal growth curves are presented depending on the experimental parameters of the fractality of the cloud medium in the general case and with rapid diffusion. It is noted that the fractality index is responsible for the intensity of the process, the greater the fractality, the more intense the process of snow crystal growth. The considered model can be used to calculate the growth of snow crystals taking into account the fractal parameters of the cloud environment.
Keywords: snow crystal, dynamic model, fractal medium, cloud water content, snow crystal, dynamic model, fractal medium, cloud water content.
@article{VKAM_2022_39_2_a5,
     author = {T. S. Kumykov},
     title = {Modeling the growth of flat snow crystals in clouds with fractal structure},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {80--90},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a5/}
}
TY  - JOUR
AU  - T. S. Kumykov
TI  - Modeling the growth of flat snow crystals in clouds with fractal structure
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 80
EP  - 90
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a5/
LA  - ru
ID  - VKAM_2022_39_2_a5
ER  - 
%0 Journal Article
%A T. S. Kumykov
%T Modeling the growth of flat snow crystals in clouds with fractal structure
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 80-90
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a5/
%G ru
%F VKAM_2022_39_2_a5
T. S. Kumykov. Modeling the growth of flat snow crystals in clouds with fractal structure. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 80-90. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a5/

[1] Shishkin N. S., O roste snezhinok v oblakakh. Voprosy fiziki oblakov i aktivnykh vozdeistvii, Gidrometeorologicheskoe izdatelstvo, L., 1965, 144 pp.

[2] Mandelbrot B. B., The Fractal Geometry of Nature, Freeman, N. Y., 1982, 468 pp.

[3] Kumykov T. S., Parovik R. I., “Matematicheskoe modelirovanie zakona izmeneniya zaryada oblachnykh kapel vo fraktalnoi srede”, Vestnik KRAUNTs. Fiz.-mat. nauki, 10:1 (2015), 12–17 DOI: 10.18454/2079-6641-2015-10-1-12-17

[4] Kumykov T. S., “Charge accumulation in thunderstorm clouds: fractal dynamic model”, E3S Web of Conferences, 127:01001 (2019), 22–29 \href {https://doi.org/10.1051/e3sconf/201912701001}

[5] Kumykov T. S., “Mathematical modeling of the evolution of cloud drops with the influence of the fractality of the cloud environment”, Journal of Mathematical Sciences, 253:4 (2021), 520–529 DOI: 10.1007/s10958-021-05249-x | DOI

[6] Haughton N. G., “A preliminary quantitative analysis of precipitation mechanisms”, Journal of Meteorology, 7:6 (1950), 363–369 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Shogenov V. Kh., Akhkubekov A. A., Akhkubekov R. A., “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2004, no. 1, 46–50

[8] Potapov A. A., Fraktaly v radiofizike i radiolokatsii: Topologiya vyborki, Universitetskaya kniga, M., 2005, 848 pp.

[9] Rekhviashvili S. Sh., “Formalizm Lagranzha s drobnoi proizvodnoi v zadachakh mekhaniki”, Pisma ZhTF, 30:2 (2004), 33–37

[10] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[11] Rys F., Waldfogel A., “Fractals in Physics”, Proceedings of the VI International Symposium on Fractals in Physics, 1985, 644–649