On a control problem for the subdiffusion equation with a fractional derivative in the sense of caputo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 62-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the rectangle for a differential equation of fractional order in the sense of Caputo, we study the control problem with the help of a source function. In other words, the task is to find the source function f(x;y) in such a way that, as a result, at the time t = Θ the temperature of the object under study should be distributed as a given function Ψ(x;y). Sufficient conditions are found for the function Ψ(x;y), which ensure both the existence and uniqueness of the solution to the control problem.
Keywords: fractional derivatives in the sense of Caputo, heat conduction equations, control problem.
@article{VKAM_2022_39_2_a4,
     author = {Yusuf Egrashevich Fayziev},
     title = {On a control problem for the subdiffusion equation with a fractional derivative in the sense of caputo},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {62--78},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a4/}
}
TY  - JOUR
AU  - Yusuf Egrashevich Fayziev
TI  - On a control problem for the subdiffusion equation with a fractional derivative in the sense of caputo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 62
EP  - 78
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a4/
LA  - ru
ID  - VKAM_2022_39_2_a4
ER  - 
%0 Journal Article
%A Yusuf Egrashevich Fayziev
%T On a control problem for the subdiffusion equation with a fractional derivative in the sense of caputo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 62-78
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a4/
%G ru
%F VKAM_2022_39_2_a4
Yusuf Egrashevich Fayziev. On a control problem for the subdiffusion equation with a fractional derivative in the sense of caputo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 62-78. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a4/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, v. 204, Amsterdam, The Netherlands, Elsevier, 2006, 540 pp.

[2] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Moskva, Nauka, 2005

[3] Lions J. L., Control Optimal de Systems Governess par des Equations aux Derivees Partielles, Dunod, Paris, 1968

[4] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Differentsialnye uravneniya, 36:12 (2000), 1670–1686

[5] Ilin V. A., Moiseev E. I., “Optimalnoe granichnoe upravlenie uprugoi siloi na odnom kontse struny pri svobodnom vtorom ee kontse”, Differentsialnye uravneniya, 41:1 (2005), 105–115

[6] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnogo upravleniya smescheniem na odnom kontse struny, osnovannaya na otyskanii minimuma integrala ot modulya proizvodnoi smescheniya, vozvedennogo v proizvolnuyu stepen $r >- 1$”, DAN RF, 411:6 (2006), 736–740

[7] Fattorini H. O., “Time and norm optimal control for linear parabolic equations: necessary and sufficient conditions.”, Control and Estimation of Distributed Parameter Systems. International Series of Numerical Mathematics, Birkhauser, Basel, 13 (2002), 151–168

[8] Barbu V., Rascanu A., Tessitore G., “Carleman estimates and controllability of linear stochastic heat equations”, Appl. Math. Optim., 47 (2003), 97–120 | DOI

[9] Alimov Sh. A., “O zadachi bystrodeistviya v upravlenii protsessom teploobmena”, Uzbekskii Matematicheskii Zhurnal, 2005, no. 4, 13–21

[10] Alimov Sh. A., “Ob odnoi zadache upravleniya protsessom teploobmena”, DAN Rossii, 421:5 (2008), 583–585

[11] Alimov Sh. A., Albeverio S., “On a Time-Optimal Control Problem Associated with the Heat Exchange Process”, Appl. Math. Optim., 2008, no. 57, 58–68

[12] Alimov Sh. A., “On a control problem associated with the heat transfer process”, Eurasian mathematical journal, 1:2 (2010), 17–30

[13] Alimov Sh. A., “On the null-controllability of the heat exchange process”, Eurasian mathematical journal, 2:3 (2011), 5–19

[14] Faiziev Yu. E., Khalilova N., “Ob odnoi zadache upravleniya protsessom teploprovodnosti”, Vestnik NUUz, 2016, no. 2/1, 49–54

[15] Faiziev Yu. E., Kuchkarov A. F., Nosirova D. E., “Ob odnoi zadache upravleniya protsessom teploprovodnosti v pryamougolnike”, Vestnik NUUz, 2017, no. 2/2, 239–244

[16] Fayziev Yu. E., “On the control of heat conduction, IIUM Engineering Journal”, International Journal of Mathematics and Computation, 19:1 (2018), 168–177

[17] Liu Y., Li Z., Yamamoto M., “Inverse problems of determining sources of the fractional partial differential equations”, Handbook of Fractional Calculus with Applications, 2 (2019), 411–430

[18] Ashurov R., Fayziev Yu., “On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations”, Fractal and Fractional, 6:41 (2022), 168–177

[19] Ashyralyev A., Urun M., “Time-dependent source identification Schrodinger type problem”, International Journal of Applied Mathematics, 34:2 (2021), 297–310

[20] Niu P., Helin T., Zhang Z., “An inverse random source problem in a stochastic fractional diffusion equation”, Inverse Problems, 36:4 (2020), 045002 | DOI

[21] Slodichka M., “Uniqueness for an inverse source problem of determining a space-dependent source in a non-autonomous time-fractional diffusion equation”, Frac. Cal. and Appl. Anal., 2020:23 (6), 1703-1711

[22] Zhang Y., Xu X., “Inverse scource problem for a fractional differential equations”, Inverse Probems, 27:3 (2011), 31–42

[23] Kirane M., Malik A. S., “Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time”, Applied Mathematics and Computation, 218 (2011), 163–170 | DOI

[24] Kirane M., Samet B., Torebek B. T., “Determination of an unknown source term and the temperature distribution for the subdiffusion equation at the initial and final data”, Electronic Journal of Differential Equations, 217 (2017), 1–13

[25] Nguyen H. T., Le D. L., Nguyen V. T., “Regularized solution of an inverse source problem for a time fractional diffusion equation”, Applied Mathematical Modelling, 40 (2016), 8244–8264 | DOI

[26] Li Z., Liu Y., Yamamoto M., “Initial-boundary value problem for multi-term time-fractional diffusion equation with positive constant coefficients”, Applied Mathematica and Computation, 257 (2015), 381–397 | DOI

[27] Rundell W., Zhang Z., “Recovering an unknown source in a fractional diffusion problem”, Journal of Computational Physics, 386 (2018), 299–314 | DOI

[28] Malik S. A., Aziz S., “An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions”, Computers and Mathematics with applications, 3 (2017), 7–19

[29] Ruzhansky M., Tokmagambetov N., Torebek B. T., “Inverse source problems for positive operators”, J. Inverse Ill-Possed Probl, 27 (2019), 891–911 | DOI

[30] Ashurov R. R. Muhiddinova O., “Inverse problem of determining the heat source density for the subdiffusion equation”, Differential equations, 56:12 (2020), 1550–1563 | DOI

[31] Ashurov R., Fayziev Yu., “On construction of solutions of linear fractional differentional equations with constant coefficients and the fractional derivatives”, Uzb. Math. Journ., 2017, no. 3, 3–21

[32] Shuang Zh., Saima R., Asia R., Khadija K., Abdullah M., “Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time”, AIMS Mathematics, 6:11 (2021), 12114–12132 | DOI

[33] Ashurov R., Fayziev Yu., “Inverse problem for determining the order of the fractional derivative in the wave equation”, Mathematical Notes, 110:6 (2021), 842–852 | DOI

[34] Kirane M., Salman A. M. Mohammed A. Al-Gwaiz, “An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions”, Math. Meth. Appl. Sci., 36:9 (2013), 1056-1069 | DOI

[35] Ashurov R., Fayziev Yu., “Determination of fractional order and source term in a fractional subdiffusion equation”, Eurasian Mathematical Journal, 13:1 (2022), 19–31 | DOI

[36] Ashurov R., Fayziev Yu., “Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation”, Lobachevskii journal of mathematics, 42:3 (2021), 508–516 | DOI