Note on the spectral theorem for unbounded non-selfadjoint operators
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 42-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we deal with non-selfadjoint operators with the compact resolvent. Having been inspired by the Lidskii idea involving a notion of convergence of a series on the root vectors of the operator in a weaker – Abel-Lidskii sense, we proceed constructing theory in the direction. The main concept of the paper is a generalization of the spectral theorem for a non-selfadjoint operator. In this way, we come to the definition of the operator function of an unbounded non-selfadjoint operator. As an application, we notice some approaches allowing us to principally broaden conditions imposed on the right-hand side of the evolution equation in the abstract Hilbert space.
Keywords: Spectral theorem, Abel-Lidskii basis property, Schatten-von Neumann class, operator function
Mots-clés : evolution equation.
@article{VKAM_2022_39_2_a3,
     author = {M. V. Kukushkin},
     title = {Note on the spectral theorem for unbounded non-selfadjoint operators},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {42--61},
     year = {2022},
     volume = {39},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a3/}
}
TY  - JOUR
AU  - M. V. Kukushkin
TI  - Note on the spectral theorem for unbounded non-selfadjoint operators
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 42
EP  - 61
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a3/
LA  - en
ID  - VKAM_2022_39_2_a3
ER  - 
%0 Journal Article
%A M. V. Kukushkin
%T Note on the spectral theorem for unbounded non-selfadjoint operators
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 42-61
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a3/
%G en
%F VKAM_2022_39_2_a3
M. V. Kukushkin. Note on the spectral theorem for unbounded non-selfadjoint operators. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 42-61. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a3/

[1] Agranovich M. S., “On series with respect to root vectors of operators associated with forms having symmetric principal part”, Functional Analysis and its applications, 28 (1994), 151-167 | DOI

[2] Gohberg I. C., Krein M. G., Introduction to the theory of linear non-selfadjoint operators in a Hilbert space, Moscow, Nauka, 1965, 448 pp. (In Russian)

[3] Kato T., Perturbation theory for linear operators., Springer-Verlag, Berlin, Heidelberg, New York, 1980

[4] Katsnelson V. E., “Conditions under which systems of eigenvectors of some classes of operators form a basis”, Funct. Anal. Appl., 1:2 (1967), 122-132 | DOI

[5] Kipriyanov I. A., “On spaces of fractionally differentiable functions”, Izv. Akad. Nauk SSSR Ser. Mat., 24:6 (1960), 865-882 (In Russian)

[6] Kipriyanov I. A., “The operator of fractional differentiation and powers of the elliptic operators”, Dokl. Akad. Nauk SSSR, 131:2 (1960), 238-241

[7] Kukushkin M. V., “On One Method of Studying Spectral Properties of Non-selfadjoint Operators”, Abstract and Applied Analysis, 2020 (2020), 1461647 DOI:10.1155/2020/1461647 | DOI

[8] Kukushkin M. V., “Asymptotics of eigenvalues for differential operators of fractional order”, Fract. Calc. Appl. Anal., 22:3 (2019), 658–681 DOI:10.1515/fca-2019-0037 | DOI

[9] Kukushkin M. V., “Abstract fractional calculus for m-accretive operators”, International Journal of Applied Mathematics, 34:1 (2021) DOI:10.12732/ijam.v34i1.1 | DOI

[10] Kukushkin M. V., “Natural lacunae method and Schatten-von Neumann classes of the convergence exponent”, Mathematics, 10:13 (2022), 2237 DOI:10.3390/math10132237 | DOI

[11] Kukushkin M. V., “Evolution Equations in Hilbert Spaces via the Lacunae Method”, Fractal Fract., 6:5 (2022), 229 10.3390/fractalfract6050229 | DOI

[12] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integral'nyye operatory v prostranstvakh summiruyemykh funktsiy [Integral operators in the spaces of summable functions], Nauka, FIZMATLIT, Moscow, 1966

[13] Krein M. G., “Criteria for completeness of the system of root vectors of a dissipative operator”, Amer. Math. Soc. Transl. Ser., Amer. Math. Soc., Providence, RI, 26:2 (1963), 221-229

[14] Levin B. Ja., Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, v. 5, American Mathematical Soc., Providence, Rhode Island, 1964, 523 pp.

[15] Lidskii V. B., “Summability of series in terms of the principal vectors of non-selfadjoint operators”, Tr. Mosk. Mat. Obs., 11 (1962), 3-35 (In Russian)

[16] Markus A. S., Matsaev V. I., “Operators generated by sesquilinear forms and their spectral asymptotics. Linear operators and integral equations”, Mat. Issled., 61 (1981), 86-103 (In Russian)

[17] Markus A. S., “Expansion in root vectors of a slightly perturbed selfadjoint operator”, Soviet Math. Dokl., 3 (1962), 104-108 (In Russian)

[18] Mamchuev M. O., “Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method”, Fractional Calculus and Applied Analysis, 20:1 (2017), 190-211 DOI: 10.1515/fca-2017-0010 | DOI

[19] Moroz L., Maslovskaya A. G., “Hybrid stochastic fractal-based approach to modeling the switching kinetics of ferroelectrics in the injection mode”, Mathematical Models and Computer Simulations, 12 (2020), 348-356 | DOI

[20] Nakhushev A. M., “The Sturm-Liouville problem for an ordinary differential equation of the second order with fractional derivatives in lower terms”, Dokl. Akad. Nauk SSSR USSR, 234:2 (1977), 308-311 (In Russian)

[21] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izvestiya: Mathematics, 73:2 (2009), 351-392 | DOI

[22] Riesz F., Nagy B. Sz., Functional Analysis, Ungar, New York, 1955

[23] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Philadelphia, PA, USA, 1993

[24] Shkalikov A. A., “Perturbations of selfadjoint and normal operators with a discrete spectrum”, Russian Mathematical Surveys, 71:5(431) (2016), 113-174 | DOI