On one boundary value problem for the fourth-order equation in partial derivatives
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 32-41

Voir la notice de l'article provenant de la source Math-Net.Ru

he initial-boundary problem for the heat conduction equation inside a bounded domain is considered. It is supposed that on the boundary of this domain the heat exchange takes place according to Newton's law. The control parameter is equal to the magnitude of output of hot air and is defined on a givenmpart of the boundary. Then we determined the dependence T(Θ) on the parameters of the temperature process when Θ is close to critical value.
Keywords: boundary value problem, Fourier method, the existence of a solution, the uniqueness of a solution.
@article{VKAM_2022_39_2_a2,
     author = {O. Sh. Kilichov and A. N. Ubaydullaev},
     title = {On one boundary value problem for the fourth-order equation in partial derivatives},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a2/}
}
TY  - JOUR
AU  - O. Sh. Kilichov
AU  - A. N. Ubaydullaev
TI  - On one boundary value problem for the fourth-order equation in partial derivatives
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 32
EP  - 41
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a2/
LA  - en
ID  - VKAM_2022_39_2_a2
ER  - 
%0 Journal Article
%A O. Sh. Kilichov
%A A. N. Ubaydullaev
%T On one boundary value problem for the fourth-order equation in partial derivatives
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 32-41
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a2/
%G en
%F VKAM_2022_39_2_a2
O. Sh. Kilichov; A. N. Ubaydullaev. On one boundary value problem for the fourth-order equation in partial derivatives. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 32-41. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a2/