Mots-clés : Pascal's triangle.
@article{VKAM_2022_39_2_a14,
author = {V. L. Shcherban},
title = {How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {222--236},
year = {2022},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/}
}
TY - JOUR AU - V. L. Shcherban TI - How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 222 EP - 236 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/ LA - ru ID - VKAM_2022_39_2_a14 ER -
%0 Journal Article %A V. L. Shcherban %T How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 222-236 %V 39 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/ %G ru %F VKAM_2022_39_2_a14
V. L. Shcherban. How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 222-236. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/
[1] Voronin S. M., Prostye chisla, Znanie, M., 1978, 95 pp.
[2] Prasolov V. V., Mnogochleny, MTsNMO, M., 2001, 336 pp.
[3] Vinberg E. B., Algebra mnogochlenov, Prosveschenie, M., 1980, 176 pp.
[4] Markushevich A. I., Vozvratnye posledovatelnosti, Nauka, M., 1983, 48 pp.
[5] Uspenskii V. A., Treugolnik Paskalya, Nauka, M, 1979, 46 pp.
[6] Bogatyrev R. R., “Zolotoi treugolnik”, Mir PK, 2001, no. 6, 52–60
[7] Vorobev N. N., Chisla Fibonachchi, Nauka, M., 1992, 189 pp.
[8] Gelfond A. O., Reshenie uravnenii v tselykh chislakh, Nauka, M., 1978., 62 pp.
[9] Boltyanskii V. G., Boltyanskii N. Ya., Simmetriya v algebre, MTsNMO, M., 2002, 240 pp.
[10] Sposob dokazatelstva dlya matematiki, gde suschestvuet mnogo suzhdenii, kotorye ne mogut byt dokazany po-drugomu, [Elektronnyi resurs] (Data obrascheniya: 07.02.2021) https://ru.wikipedia.org/wiki/Dokazatelstvo_ot_protivnogo
[11] Bykov V. I., Kytmanov A. M., Lazman M. Z., Metody isklyucheniya v kompyuternoi algebre mnogochlenov, Nauka. Sib. otd-nie, Novosibirsk, 1991, 231 pp.
[12] Vygodskii M. Ya., Spravochnik po elementarnoi matematike, Gostekhizdat, M., 1954, 412 pp.
[13] Scherban V. L., “Pochemu okruzhayuschee nas prostranstvo imenno trekhmerno”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki, 2020, no. 1, 97–112
[14] Ayoub R., An Introduction to the Analitic Theory of Numbers. American mathematical society providence, Rhode Island, 1963, 377 pp.
[15] Itogi nauki i tekhniki. Seriya «Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory», Math-net.ru arkhiv [Elektronnyi resurs]. Rezhim dostupa: (data obrascheniya: 07. 02. 2021) http://www.mathnet.ru/php/journal.phtml?jrnid=into&wshow=details&option_lang=rus