How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 222-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this arithmetic study, some unclaimed and unknown numerical properties of Pascal's irregular triangles are proposed for further study. These properties made it possible to find a universal method for finding many symmetric polynomials of power sums from Pascal's triangle tables. The same properties helped to establish two formulas for directly finding all primes. The above became available after the successful decryption of a certain group of Pascal's triangle tables in the cryptographic subsystem. The rules of real and arithmetic operations for such tables have been found and have been unambiguously defined, therefore, implementation of the tasks on a computer is possible. Plus, there was no place for special information in combinatorial problems in the structural part of the logical material. The method of building arithmetic tables is universal and makes it possible to get their further development in the subsystem of numerical irregular triangles. Further, it has been found that only such tables can transmit arithmetic information by decryption for scientific and mathematical purposes.
Keywords: recurrent numerical sequences, symmetric polynomials, prime numbers
Mots-clés : Pascal's triangle.
@article{VKAM_2022_39_2_a14,
     author = {V. L. Shcherban},
     title = {How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {222--236},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/}
}
TY  - JOUR
AU  - V. L. Shcherban
TI  - How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 222
EP  - 236
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/
LA  - ru
ID  - VKAM_2022_39_2_a14
ER  - 
%0 Journal Article
%A V. L. Shcherban
%T How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 222-236
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/
%G ru
%F VKAM_2022_39_2_a14
V. L. Shcherban. How to take from pascal's triangle an infinite series of power sums from many variables and arithmetic systems compared modulo a prime number. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 222-236. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a14/

[1] Voronin S. M., Prostye chisla, Znanie, M., 1978, 95 pp.

[2] Prasolov V. V., Mnogochleny, MTsNMO, M., 2001, 336 pp.

[3] Vinberg E. B., Algebra mnogochlenov, Prosveschenie, M., 1980, 176 pp.

[4] Markushevich A. I., Vozvratnye posledovatelnosti, Nauka, M., 1983, 48 pp.

[5] Uspenskii V. A., Treugolnik Paskalya, Nauka, M, 1979, 46 pp.

[6] Bogatyrev R. R., “Zolotoi treugolnik”, Mir PK, 2001, no. 6, 52–60

[7] Vorobev N. N., Chisla Fibonachchi, Nauka, M., 1992, 189 pp.

[8] Gelfond A. O., Reshenie uravnenii v tselykh chislakh, Nauka, M., 1978., 62 pp.

[9] Boltyanskii V. G., Boltyanskii N. Ya., Simmetriya v algebre, MTsNMO, M., 2002, 240 pp.

[10] Sposob dokazatelstva dlya matematiki, gde suschestvuet mnogo suzhdenii, kotorye ne mogut byt dokazany po-drugomu, [Elektronnyi resurs] (Data obrascheniya: 07.02.2021) https://ru.wikipedia.org/wiki/Dokazatelstvo_ot_protivnogo

[11] Bykov V. I., Kytmanov A. M., Lazman M. Z., Metody isklyucheniya v kompyuternoi algebre mnogochlenov, Nauka. Sib. otd-nie, Novosibirsk, 1991, 231 pp.

[12] Vygodskii M. Ya., Spravochnik po elementarnoi matematike, Gostekhizdat, M., 1954, 412 pp.

[13] Scherban V. L., “Pochemu okruzhayuschee nas prostranstvo imenno trekhmerno”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki, 2020, no. 1, 97–112

[14] Ayoub R., An Introduction to the Analitic Theory of Numbers. American mathematical society providence, Rhode Island, 1963, 377 pp.

[15] Itogi nauki i tekhniki. Seriya «Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory», Math-net.ru arkhiv [Elektronnyi resurs]. Rezhim dostupa: (data obrascheniya: 07. 02. 2021) http://www.mathnet.ru/php/journal.phtml?jrnid=into&wshow=details&option_lang=rus