On some unknown results related to the nontrivial properties of ordinary triangles. part 2
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 197-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was given the detailed solution of a number of original problems formulated by B.P. Fedorov a spell ago. These problems flow organically from the study of the nontrivial properties of Euclidean triangles, including its poorly understood properties, provided with Lemoine point and Brocard point.
Keywords: triangle properties, division of the sections, Van Obel theorem.
Mots-clés : Lemoine point, Brocard point
@article{VKAM_2022_39_2_a13,
     author = {B. P. Fedorov and S. B. Bogdanova and S. O. Gladkov},
     title = {On some unknown results related to the nontrivial properties of ordinary triangles. part 2},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {197--221},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a13/}
}
TY  - JOUR
AU  - B. P. Fedorov
AU  - S. B. Bogdanova
AU  - S. O. Gladkov
TI  - On some unknown results related to the nontrivial properties of ordinary triangles. part 2
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 197
EP  - 221
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a13/
LA  - ru
ID  - VKAM_2022_39_2_a13
ER  - 
%0 Journal Article
%A B. P. Fedorov
%A S. B. Bogdanova
%A S. O. Gladkov
%T On some unknown results related to the nontrivial properties of ordinary triangles. part 2
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 197-221
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a13/
%G ru
%F VKAM_2022_39_2_a13
B. P. Fedorov; S. B. Bogdanova; S. O. Gladkov. On some unknown results related to the nontrivial properties of ordinary triangles. part 2. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 197-221. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a13/

[1] \fbox {Fedorov B. P.}, Bogdanova S. B., Gladkov S. O., “O nekotorykh neizvestnykh rezultatakh, svyazannykh s netrivialnymi svoistvami obychnykh treugolnikov. Ch. I.”, Vestnik KRAUNTs. Fiz.-mat. nauki, 37:4 (2021), 216–234

[2] https://faculty.evansville.edu/ck6/encyclopedia/etc.html

[3] Ponarin Ya. P., Elementarnaya geometriya: Planimetriya, preobrazovaniya ploskosti, v. 1, MTsNMO, M., 2004, 312 pp.

[4] Prasolov V. V., Zadachi po planimetrii, V 2 ch., Nauka, M., 1991, 320 pp.

[5] Efremov D. D., Novaya geometriya treugolnika, URSS, M., 2015, 352 pp.

[6] Sharygin I. F., Reshenie zadach, Ucheb. posobie dlya 10 kl, Prosveschenie, M., 1994, 252 pp.

[7] Sharygin I. F., Golubev V. I., Fakultativnyi kurs po matematike. Reshenie zadach, Uchebnoe Posobie dlya 11 kl, Prosveschenie, M., 1991, 384 pp.

[8] Prasolov V. V., Tochki Brokara i izogonalnoe sopryazhenie, MTsMNO, M., 2000, 24 pp.