Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with ``memory''
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 184-196
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers a locally one-dimensional difference scheme for a general parabolic equation in a p-dimensional parallelepiped. To describe coagulation processes in media with “memory”, non-local sources of a special type are included in the equation. An a priori estimate is obtained for solving the corresponding difference scheme, which implies its convergence.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
boundary value problem, locally one-dimensional difference scheme, stability and convergence of the difference scheme, approximation error.
                    
                  
                
                
                @article{VKAM_2022_39_2_a12,
     author = {M. Kh. Shkhanukov-Lafishev and M. M. Lafisheva and I. D. Taisaev},
     title = {Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with ``memory''},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {184--196},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/}
}
                      
                      
                    TY - JOUR AU - M. Kh. Shkhanukov-Lafishev AU - M. M. Lafisheva AU - I. D. Taisaev TI - Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with ``memory'' JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 184 EP - 196 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/ LA - ru ID - VKAM_2022_39_2_a12 ER -
%0 Journal Article %A M. Kh. Shkhanukov-Lafishev %A M. M. Lafisheva %A I. D. Taisaev %T Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with ``memory'' %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 184-196 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/ %G ru %F VKAM_2022_39_2_a12
M. Kh. Shkhanukov-Lafishev; M. M. Lafisheva; I. D. Taisaev. Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with ``memory''. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 184-196. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/
