Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with “memory”
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 184-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a locally one-dimensional difference scheme for a general parabolic equation in a p-dimensional parallelepiped. To describe coagulation processes in media with “memory”, non-local sources of a special type are included in the equation. An a priori estimate is obtained for solving the corresponding difference scheme, which implies its convergence.
Keywords: boundary value problem, locally one-dimensional difference scheme, stability and convergence of the difference scheme, approximation error.
@article{VKAM_2022_39_2_a12,
     author = {M. Kh. Shkhanukov-Lafishev and M. M. Lafisheva and I. D. Taisaev},
     title = {Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with {\textquotedblleft}memory{\textquotedblright}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {184--196},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/}
}
TY  - JOUR
AU  - M. Kh. Shkhanukov-Lafishev
AU  - M. M. Lafisheva
AU  - I. D. Taisaev
TI  - Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with “memory”
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 184
EP  - 196
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/
LA  - ru
ID  - VKAM_2022_39_2_a12
ER  - 
%0 Journal Article
%A M. Kh. Shkhanukov-Lafishev
%A M. M. Lafisheva
%A I. D. Taisaev
%T Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with “memory”
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 184-196
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/
%G ru
%F VKAM_2022_39_2_a12
M. Kh. Shkhanukov-Lafishev; M. M. Lafisheva; I. D. Taisaev. Locally one-dimensional schemes for an equation describing coagulation processes in convective clouds with “memory”. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 184-196. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a12/

[1] Ashabokov B. A., Taisaev I. D., Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya parabolicheskogo uravneniya obschego vida, opisyvayuschego mikrofizicheskie protsessy v konvektivnykh oblakakh”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 3(23), 158-167

[2] Kogan E. L., Mazin I. P., Sergeev B. N., Khvorostyanov V. I., Chislennoe modelirovanie oblakov, Gidrometeoizdat, M., 1984, 178 pp.

[3] Ashabokov B. A., Shapovalov A. V., Konvektivnye oblaka: chislennye modeli i rezultaty modelirovaniya v estestvennykh usloviyakh i pri aktivnom vozdeistvii, Izd-vo KBNTs RAN, Nalchik, 2008, 254 pp.

[4] Berry E. X., “Gloud Droplet by Collection”, J. Atoms Sci., 24, 688–701 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Berry E. X., Reinhardt R. L., “An analysis of Gloud Drop Grouth by Collection”, J. Atoms Sci., 24, 1825–1837

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp.

[7] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, ZhVM i MF, 8:6 (1968), 1218–1231

[8] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 480 pp.