Keywords: fractional differentiation operator, numerical-analytical method, discrete analog, moisture transfer, algorithm.
@article{VKAM_2022_39_2_a11,
author = {L. I. Serbina},
title = {Numerical-analytical method for solving the modified {{\CYRS}auchy} problem for the fractional diffusion equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {175--183},
year = {2022},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/}
}
TY - JOUR AU - L. I. Serbina TI - Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 175 EP - 183 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/ LA - ru ID - VKAM_2022_39_2_a11 ER -
%0 Journal Article %A L. I. Serbina %T Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 175-183 %V 39 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/ %G ru %F VKAM_2022_39_2_a11
L. I. Serbina. Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 175-183. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/
[1] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp.
[2] Nerpin S. V., Chudnovskii A. F., Energo i massoobmen v sisteme rastenie-pochva-vozdukh, Gidrometizdat, L., 1975, 358 pp.
[3] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976, 352 pp.
[4] Sobolev S. L., “Lokalno-neravnovesnye modeli protsessov perenosa”, Uspekhi fiz. nauk, 167:10 (1997), 1096-1106
[5] Kochubei A. N., “Diffuziya drobnogo poryadka”, Diff. uravn., 26:4 (1990), 660-670
[6] Fedotov G. N., Tretyakov Yu. D., Ivanov V. K., Kuklin A. I., Pakhomov E. I., Islamov A. Kh., Pochatkova T. N., “Vliyanie vlazhnosti na fraktalnye svoistva pochvennykh kolloidov”, DAN, 409:2 (2006), 199-201
[7] Serbina L. I., Nelokalnye matematicheskie modeli protsessov perenosa v sistemakh s fraktalnoi strukturoi, Izd-vo KBNTs RAN, Nalchik, 2002, 144 pp.
[8] Nigmatullin R.R., “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teor. i mat. fizika, 1992, no. 3, 354-368
[9] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Fizmatlit, M., 2003, 272 pp.
[10] Serbina L. I., “Ob odnoi matematicheskoi modeli perenosa substantsii vo fraktalnykh sredakh”, Mat. modelirovanie, 15:9 (2005), 17–28
[11] Nakhushev A. M., “Nagruzhnye uravneniya i ikh prilozheniya”, Diff. uravn., 19:1 (1983), 86-94
[12] Lavrentev M. M., Savelev L. Ya., Teoriya operatorov i nekorrektnye zadachi, Novosibirsk, 1999
[13] Golovizin V. M., Kisilev V. P., Korotkin I. A., Yurkov Yu. I., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravnenii drobnoi diffuzii, Preprint IBRAE RAN, M., 2002, 57 pp.
[14] Samarskii A. A., Vvedenie v chislennye metody, Nauka, M., 1997, 240 pp.
[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987, 688 pp.