Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 175-183

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a numerical-analytical method for efficient search for an approximate solution of the modified Cauchy problem for a parabolic differential equation with a fractional time derivative in the sense of Riemann-Liouville, which naturally arises in the study of nonlinear features of moisture-salt transfer processes in media with a fractal structure of pore space
Mots-clés : diffusion equation, fractal structure
Keywords: fractional differentiation operator, numerical-analytical method, discrete analog, moisture transfer, algorithm.
@article{VKAM_2022_39_2_a11,
     author = {L. I. Serbina},
     title = {Numerical-analytical method for solving the modified {{\CYRS}auchy} problem for the fractional diffusion equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {175--183},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/}
}
TY  - JOUR
AU  - L. I. Serbina
TI  - Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 175
EP  - 183
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/
LA  - ru
ID  - VKAM_2022_39_2_a11
ER  - 
%0 Journal Article
%A L. I. Serbina
%T Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 175-183
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/
%G ru
%F VKAM_2022_39_2_a11
L. I. Serbina. Numerical-analytical method for solving the modified Сauchy problem for the fractional diffusion equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 175-183. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a11/