A concise overview of particle swarm optimization methods
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 150-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Particle Swarm Optimization (PSO) is a meta-heuristic method of global, inferred, proposed by Kennedy and Eberhart in 1995. It is currently one of the most commonly used search methods. This review provides a brief overview of PSO research in recent years – swarm and rate initialization methods in PSO, modifications, neighborhood topologies, hybridization, and an overview of various PSO applications.
Keywords: optimization, particle swarm optimization, meta-heuristic algorithm.
@article{VKAM_2022_39_2_a10,
     author = {E. M. Kazakova},
     title = {A concise overview of particle swarm optimization methods},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {150--174},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/}
}
TY  - JOUR
AU  - E. M. Kazakova
TI  - A concise overview of particle swarm optimization methods
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 150
EP  - 174
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/
LA  - ru
ID  - VKAM_2022_39_2_a10
ER  - 
%0 Journal Article
%A E. M. Kazakova
%T A concise overview of particle swarm optimization methods
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 150-174
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/
%G ru
%F VKAM_2022_39_2_a10
E. M. Kazakova. A concise overview of particle swarm optimization methods. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 150-174. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/

[1] Eberhart R., Kennedy J., “Particle swarm optimization”, Proceedings of the IEEE International Conference on Neural Networks, 4, 1995, 1942–1948 DOI: 10.1109/ICNN.1995.488968

[2] Eberhart R., Kennedy J., “A new optimizer using particle swarm theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, 39-43 DOI: 10.1109/MHS.1995.494215 | DOI

[3] Cleghorn C. W., Engelbrecht A. P., “Particle swarm convergence: an empirical investigation”, 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014, 2524-2530 DOI: 10.1007/978-3-319-09952-112 | DOI

[4] Banks A., Vincent J., Anyakoha C., “A review of particle swarm optimization”, Part I: background and development, Nat. Comput., 4:6 (2007), 467-484 DOI: 10.1007/s11047-007-9049-5

[5] Karpenko A. P., Seliverstov E. Yu., “Obzor metodov roya chastits dlya zadachi globalnoi optimizatsii (Particle Swarm Optimization)”, Mashinostroenie i kompyuternye tekhnologii, 2009, no. 3, 2

[6] Houssein E.H., Saad M.R.,Hashim F.A., Shaban H., Hassaballah M., “Levy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems”, Eng. Appl. Artif.Intell., 94 (2020), 103731 DOI: 10.1016/j.engappai.2020.103731 | DOI

[7] Cazzaniga P., Nobile M.S., Besozzi D., “The impact of particles initialization in PSO: parameter estimation as a case in point”, 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, 94 (2015), 1-8 DOI:10.1109/CIBCB.2015.7300288

[8] Farooq M.U., Ahmad A., Hameed A., “Opposition-based initialization and a modified pattern for inertia weight (IW) in PSO”, 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, 2017, 96-101 DOI: 10.1109/INISTA.2017.8001139

[9] Djellali H., Ghoualmi N., “Improved chaotic initialization of particle swarm applied to feature selection”, 2019 International Conference on Networking and Advanced Systems (ICNAS), IEEE, 2019, 1-5 DOI: 10.1109/ICNAS.2019.8807837

[10] Li Q., Liu S.-Y., Yang X.-S., “Influence of initialization on the performance of metaheuristic optimizers”, Appl. Soft Comput., 2020, 106193 DOI: 10.1016/j.asoc.2020.106193 | DOI

[11] Liang X., Li W., Zhang Y., Zhong Y. , Zhou M., “Recent advances in particle swarm optimization via population structuring and individual behavior control”, 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), 2013, 503-508 DOI: 10.1109/ICNSC.2013.6548790 | DOI

[12] Engelbrecht A., “Particle swarm optimization: velocity initialization”, IEEE Congress on Evolutionary Computation, 2012, 1-8 DOI: 10.1109/CEC.2012.6256112

[13] Gunasundari S., Janakiraman S. , Meenambal S., “Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis”, Expert Syst. Appl., 56 (2016), 28-47 DOI: 10.1016/j.eswa.2016.02.042Get | DOI

[14] Marandi A., Afshinmanesh F., Shahabadi M., Bahrami F., “Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna”, IEEE International Conference on Evolutionary Computation, 2006, 3212-3218 DOI: 10.1109/CEC.2006.1688716 | DOI

[15] Shi Y., Eberhart R.C., “Parameter selection in particle swarm optimization, in: International conference on evolutionary programming”, Springer, 1998, 591–600 DOI:10.1007/BFb0040810

[16] Qu B. Y., Suganthan P. N., Das S., “A distance-based locally informed particle swarm model for multimodal optimization”, IEEE Trans. Evol. Comput., 17:3 (2012), 387–402 DOI: 10.1109/TEVC.2012.2203138

[17] Shi Y., Liu H., Gao L., Zhang G., “Cellular particle swarm optimization”, Inf. Sci., 181:20 (2011), 4460–4493 DOI: 10.1016/j.ins.2010.05.025 | DOI

[18] Alba E., Talbi E., Luque G., Melab N., “Meta-heuristics and parallelism”, In book: Parallel Metaheuristics: A New Class of Algorithms, 2005, 79–103 DOI: 10.1002/0471739383.ch4 | DOI

[19] Houssein E. H. et al., “Major advances in particle swarm optimization: theory, analysis, and application”, Swarm and Evolutionary Computation, 63 (2021), 100868 DOI:10.1016/j.swevo.2021.100868 | DOI

[20] Hu X., Eberhart R.C., “Adaptive particle swarm optimization: detection and response to dynamic systems”, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), 2, IEEE, 2002, 1666–1670 DOI: 10.1109/CEC.2002.1004492

[21] Xie X.-F., Zhang W.-J., Yang Z.-L., “Adaptive particle swarm optimization on individual level”, 6th International Conference on Signal Processing, 2002, 2, IEEE, 2002, 1215–1218 DOI: 10.1109/ICOSP.2002.1180009

[22] Zhan Z.-H., Zhang J., Li Y., Chung H.S.-H., “Adaptive particle swarm optimization”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39:6 (2009), 1362–1381 DOI: 10.1016/j.engappai.2020.103731 | DOI

[23] Ermakov B. S., “Metod roya chastits s adaptivnymi sotsialnoi i kognitivnoi komponentami”, Modelirovanie, optimizatsiya i informatsionnye tekhnologii, 7:3 (2019), 6 DOI: 10.26102/2310-6018/2019.26.3.006

[24] Sun J., Feng B., Xu W., “Particle swarm optimization with particles having quantum behavior”, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 1, IEEE, 2004, 325–331 DOI: 10.1109/CEC.2004.1330875 | DOI

[25] Qian Q., Wu J., Wang Z., “Optimal path planning for two-wheeled self-balancing vehicle pendulum robot based on quantum-behaved particle swarm optimization algorithm”, Pers. Ubiquitous Comput, 23:3-4 (2019), 393–403 DOI:10.1007/s00779-019-01216-1 | DOI

[26] Lalwani S., Sharma H., Satapathy S. C., Deep K. , Bansal J. C., “A survey on parallel particle swarm optimization algorithms”, Arab. J. Sci. Eng., 44:4 (2019), 2899–2923 DOI:10.1007/s13369-018-03713-6 | DOI

[27] Gies D., Rahmat-Samii Y., “Reconfigurable array design using parallel particle swarm optimization”, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450), 1 (2003), 177–180 DOI: 10.1109/APS.2003.1217429 | DOI

[28] Baskar S., Suganthan P. N., “A novel concurrent particle swarm optimization”, Proceedings of the 2004 Congress on Evolutionary Computation, 1 (2004), 792–796 DOI: 10.1109/CEC.2004.1330940 | DOI

[29] Angeline P. J., “Using selection to improve particle swarm optimization”, in: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, 1998, 84–89 DOI: 10.1109/ICEC.1998.699327 | DOI

[30] Higashi N., Iba H., “Particle swarm optimization with gaussian mutation”, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03, 2003, 72–79 10.1109/SIS.2003.1202250 | DOI

[31] Lovbjerg M., Rasmussen T.K., Krink T., “Hybrid particle swarm optimiser with breeding and subpopulations”, Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, Morgan Kaufmann Publishers Inc., 2001, 469–476

[32] Miranda V., Fonseca N., “EPSO-best-of-two-worlds meta-heuristic applied to power system problems”, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, 2 (2002), 1080–1085 10.1109/CEC.2002.1004393

[33] Yang B., Chen Y. , Zhao Z., “A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems”, International Conference on Control and Automation, IEEE, 2007, 166–170 10.1109/ICCA.2007.4376340

[34] Robinson J., Sinton S., Rahmat-Samii Y., “Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna”, IEEE Antennas and Propagation Society International Symposium, 1 (2002), 314–317 10.1109/APS.2002.1016311 | DOI

[35] Korolev S. A., Maikov D. V., “Modifikatsiya algoritma roya chastits na osnove metoda analiza ierarkhii”, Vestnik VGU. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2019, no. 4, 36-46 DOI: 10.17308/sait.2019.4/2679

[36] Yang G., Chen D., Zhou G., “A new hybrid algorithm of particle swarm optimization”, International Conference on Intelligent Computing, Springer, 2006, 50-60 DOI: 10.1007/118161026

[37] Javidrad F., Nazari M., “A new hybrid particle swarm and simulated annealing stochastic optimization method”, Appl. Soft Comput., 60 (2017), 634–654 DOI: 10.1016/j.asoc.2017.07.023 | DOI

[38] Villarrubia G. , De Paz J.F., Chamoso P., De la Prieta F., “Artificial neural networks used in optimization problems”, Neurocomputing, 272 (2018), 10–16 DOI: 10.1016/j.neucom.2017.04.075 | DOI

[39] Eberhart R.C., Hu X., “Human tremor analysis using particle swarm optimization”, Proceedings of the 1999 congress on evolutionary computation-CEC99, 3 (1999), 1927–1930 DOI:10.1109/CEC.1999.785508 | DOI

[40] Hamada M., Hassan M., “Artificial neural networks and particle swarm optimization algorithms for preference prediction in multicriteria recommender systems”, Informatics, 5, Multidisciplinary Digital Publishing Institute, 5:2 (2018), 25 DOI: 10.3390/informatics5020025

[41] Zeng N., et al., “A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease”, Neurocomp, 320 (2018), 195-202 DOI: 10.1016/j.neucom.2018.09.001 | DOI

[42] Huang K.-W., Chen J.-L., Yang C.-S. , Tsai C.-W., “A memetic particle swarm optimization algorithm for solving the dna fragment assembly problem”, Neural Comput. Appl., 26:3 (2015), 495-506 DOI:10.1007/s00521-014-1659-0 | DOI

[43] Karpenko A. P., Matveeva K. O., Bulanov V. A., “Reshenie zadachi molekulyarnogo dokinga modifitsirovannym metodom roya chastits”, Mashinostroenie i kompyuternye tekhnologii, 2014, no. 4, 339-353 DOI: 10.7463/0414.0707258

[44] Katarya R. , Verma O.P., “Efficient music recommender system using context graph and particle swarm”, Multimed. Tools Appl., 77:2 (2018), 2673–2687 DOI:10.1007/s11042-017-4447-x | DOI

[45] Manusov V. Z., Matrenin P. V., Nasrullo Kh., “Primenenie algoritmov roevogo intellekta v upravlenii generiruyuschim potrebitelem s vozobnovlyaemymi istochnikami energii”, Sist. anal. i obrabot. dannykh, 76:3 (2019), 115-134 DOI: 10.17212/1814-1196-2019-3-115-134

[46] Gadasin D.V., Smalkov N.A., Kuzin I.A., “Ispolzovanie metoda roya chastits dlya balansirovki nagruzki v setyakh Interneta veschei”, Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov, 13:2 (2022), 17-23

[47] El Khatib S. A., Skobtsov Yu. A., Rodzin S. I., “Giperevristicheskii roevyi metod segmentatsii meditsinskikh izobrazhenii”, Informatizatsiya i svyaz, 2021, no. 2, 22-29 DOI: 10.34219/2078-8320-2021-12-2-22-29

[48] Chastikova V. A., Vlasov K. A., Kartamyshev D. A., “Obnaruzhenie DDoS-atak na osnove neironnykh setei s primeneniem metoda roya chastits v kachestve algoritma obucheniya”, Fundamentalnye issledovaniya, 4:8 (2014), 829-832

[49] Javan Salehi M., Shourian M., “Comparative Application of Model Predictive Control and Particle Swarm Optimization in Optimum Operation of a Large-Scale Water Transfer System”, Water Resour Manage, 35 (2021), 707-727 DOI:10.1007/s11269-020-02755-6 | DOI

[50] Liu W., Wang Z., Liu X., Zeng N., Bell D., “A novel particle swarm optimization approach for patient clustering from emergency departments.”, IEEE Transactions on Evolutionary Computation, 23:4 (2018), 632-644 DOI:I 10.1109/TEVC.2018.2878536 | DOI