A concise overview of particle swarm optimization methods
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 150-174
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Particle Swarm Optimization (PSO) is a meta-heuristic method of global, inferred, proposed by Kennedy and Eberhart in 1995. It is currently one of the most commonly used search methods. This review provides a brief overview of PSO research in recent years – swarm and rate initialization methods in PSO, modifications, neighborhood topologies, hybridization, and an overview of various PSO applications.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimization, particle swarm optimization, meta-heuristic algorithm.
                    
                  
                
                
                @article{VKAM_2022_39_2_a10,
     author = {E. M. Kazakova},
     title = {A concise overview of particle swarm optimization methods},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {150--174},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/}
}
                      
                      
                    E. M. Kazakova. A concise overview of particle swarm optimization methods. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 150-174. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a10/
