On the control problem associated with the heating process in the bounded domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 20-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary problem for the heat conduction equation inside a bounded domain is considered. It is supposed that on the boundary of this domain the heat exchange takes place according to Newton's law. The control parameter is equal to the magnitude of output of hot air and is defined on a givenmpart of the boundary. Then we determined the dependence $T(\theta)$ on the parameters of the temperature process when $\theta$ is close to critical value.
Keywords: heat conduction equation, admissible control, initial-boundary value problem, integral equation.
@article{VKAM_2022_39_2_a1,
     author = {F. N. Dekhkonov},
     title = {On the control problem associated with the heating process in the bounded domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {20--31},
     year = {2022},
     volume = {39},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a1/}
}
TY  - JOUR
AU  - F. N. Dekhkonov
TI  - On the control problem associated with the heating process in the bounded domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 20
EP  - 31
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a1/
LA  - en
ID  - VKAM_2022_39_2_a1
ER  - 
%0 Journal Article
%A F. N. Dekhkonov
%T On the control problem associated with the heating process in the bounded domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 20-31
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a1/
%G en
%F VKAM_2022_39_2_a1
F. N. Dekhkonov. On the control problem associated with the heating process in the bounded domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 20-31. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a1/

[1] Albeverio S., Alimov Sh. A., “On a time-optimal control problem associated with the heat exchange process”, Applied Mathematics and Optimization, 57:1 (2008), 58–68 | DOI

[2] Alimov Sh. A., Dekhkonov F. N., “On a control problem associated with fast heating of a thin rod”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 2:1 (2019), 1–14

[3] Alimov Sh. A., Dekhkonov F. N., “On the time-optimal control of the heat exchange process”, Uzbek Mathematical Journal, 2019, no. 2, 4–17 | DOI

[4] Altmüller A., Grüne L., “Distributed and boundary model predictive control for the heat equation”, Technical report, University of Bayreuth, Department of Mathematics, 2012

[5] Chen N., Wang Y., Yang D., “Time–varying bang–bang property of time optimal controls for heat equation and its applications”, Syst. Control Lett, 112 (2018), 18–23 | DOI

[6] Egorov Yu. V., “Optimal control in Banach spaces”, Dokl. Akad. Nauk SSSR, 150 (1963), 241–244 (In Russian)

[7] Fattorini H. O., “Time-optimal control of solutions of operational differential equations”, SIAM J. Control, 2 (1964), 49–65

[8] Fattorini H. O., “Time and norm optimal controls: a survey of recent results and open problems”, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 2203–2218 | DOI

[9] Friedman A., “Optimal control for parabolic equations”, J. Math. Anal. Appl., 18 (1967), 479–491 | DOI

[10] Dekhkonov F. N., “On time-optimal control problem associated with parabolic equation”, Bulletin of National University of Uzbekistan, 4:1 (2021), 54–63

[11] Dekhkonov F. N., “On a time-optimal control of thermal processes in a boundary value problem”, Lobachevskii journal of mathematics, 43:1 (2022), 192–198 DOI:10.1134/S1995080222040096 | DOI

[12] Fursikov A. V., Optimal Control of Distributed Systems, Math. Soc., Providence, Rhode Island, 2000

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasi-Linear Equations of Parabolic Type, Nauka, Moscow, 1967 (In Russian)

[14] Lions J. L., Contróle optimal de systèmes gouvernés par deséquations aux dérivées partielles, Paris, Dunod Gauthier-Villars, 1968

[15] Miranda C., Equazioni alle derivate parziali di tipo ellittico, Berlin-Göttingen-Heidelberg, Springer Verlag, 1955

[16] Tikhonov A. N., Samarsky A. A., Equations of Mathematical Physics, Courier Corporation, N. Chelmsford, 2013, 800 pp.

[17] Vladimirov V. S., Equations of Mathematical Physics, New York, Marcel Dekker, 1971