35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 7-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a boundary value problem for a mixed-type equation with a positive,formally self-adjoint, high order elliptic operator. The results of the work were obtained usingthe Fourier method. Theorems on the existence and uniqueness of the classical solution of theproblem are proved. In this case, the positivity of elliptic operator turned out to be essential.At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered,and it is shown that the solution of the corresponding problem is not unique.
Keywords: boundary value problem, method Fourier, elliptic operator.
@article{VKAM_2022_39_2_a0,
     author = {R. R. Ashurov and M. B. Murzambetova},
     title = {35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {7--19},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - M. B. Murzambetova
TI  - 35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 7
EP  - 19
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a0/
LA  - ru
ID  - VKAM_2022_39_2_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A M. B. Murzambetova
%T 35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 7-19
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a0/
%G ru
%F VKAM_2022_39_2_a0
R. R. Ashurov; M. B. Murzambetova. 35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 7-19. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a0/

[1] Frankl F. I., “O zadachakh Chaplygina dlya smeshannykh do i sverkhzvukovykh techenii”, Izv. AN SSSR Ser. matem, 9:2 (1945), 121–143

[2] Frankl F. I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okonchivayuscheisya pryamym skachkom uplotneniya”, Prikladnaya matematika i mekhanika, 20:2 (1956), 196–202

[3] Bitsadze A. V., “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa v smeshannykh oblastyakh”, Dokl. AN SSSR, 122:2 (1958), 167–170

[4] Kalmenov T. Sh., “O poluperiodicheskoi zadache dlya mnogomernogo uravneniya smeshannogo tipa”, Differentsialnye uravneniya, 14:3 (1978), 546–548

[5] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl RAN, 413:1 (2007), 23–26

[6] Dzhamalov S. Z., Ashurov R. R., “Ob odnoi lineinoi obratnoi zadache dlya mnogomernogo uravneniya smeshannogo tipa pervogo roda vtorogo poryadka”, Izv. vuzov. Matem, 6 (2019), 11-22, DOI: 10.26907/0021-3446-2019-6-11-22

[7] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN. Ser. Matem, 82:2 (2018), 79–112, DOI: 10.4213/im8596

[8] Dzhamalov S. Z., Ashurov R. R.,Ruziev U. Sh., “On a Seminonlocal boundary value problem for a miltidimensional loaded mixed type equation of the second kind.”, Lobachevskii Jourmal of Mathematics., 42:3 (2021), 536–543, DOI: 10.1134/s1995080221030094 | DOI

[9] Djamalov S. Z., Ashurov R. R., “On a linear inverse problem for multidimensional mixed type equation of second type and second order”, Differential equations, 55:1 (2019), 34–44, DOI: 10.1134/s001226611901004X | DOI

[10] Murzambetova M. B., “Kraevaya zadacha dlya uravneniya smeshannogo tipa chetvertogo poryadka so spektralnym parametrom”, UzMZh, 2 (2013), 60–71

[11] Islomov B, Baltayeva U. I., “Boundary value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients”, Electronic journal of differential equations, 2015:221 (2015), 1–10, . https://ejde.math.unt.edu/Volumes/2015/221/abstr.html

[12] Yuldashev T. K., Islomov B. I, Alikulov E. K., “Boundary value problems for a loaded third-order parabolic-hyperbolic equations in infinite three dimensional domains”, Lobachevskii journal of mathematics, 41:5 (2020), 926–944, DOI: 10.1134/s1995080220050145 | DOI

[13] Tsybikov B. N., “O korrektnosti periodicheskoi zadachi dlya mnogomernogo uravneniya smeshannogo tipa”, Neklassicheskie uravneniya matematicheskoi fiziki, Novosibirsk, 1986, 201–206

[14] Bitsadze A. V., “K probleme uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Dokl. AN SSSR, 110:6 (1956), 901–902

[15] Bitsadze A. V., Uravnenie smeshannogo tipa, AN SSR., M., 1959, 164 pp.

[16] Smirnov M. M., Uravneniya smeshannogo tipa, nauka ., M., 1970, 296 pp.

[17] Vragov V. N., Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, NGU., Novosibirsk., 1983, 84 pp.

[18] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953, 281 pp.

[19] Agmon S., “On the ejgenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure and Appl. Math, 15:2 (1962), 119–143 | DOI

[20] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. S., Integralnye operatory v prostranstvakh summiruemykh funktsii, AN SSR., M., 1966, 164 pp.

[21] Ashurov R. R., Mukhitdinova A. T., “Obratnaya zadacha po opredeleniyu plotnosti teplovykh istochnikov dlya uravneniya subdiffuzii”, Differentsialnye uravneniya., 56:12 (2020), 1596–1609, DOI: 10.1134/s0374064120120043

[22] Ashurov R. R., Mukhitdinova A. T., “Nachalno-kraevye zadachi dlya giperbolicheskikh uravnenii s ellipticheskim operatorom proizvolnogo poryadka”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 30:1 (2020), 8–19, DOI: 10.26117/2079-6641-2020-30-1-8-19

[23] Alimov Sh. A., “Drobnye stepeni ellipticheskikh operatorov i izomorfizm klassov differentsiruemykh funktsii.”, Differentsialnye uravneniya, 8:9 (1972), 1609–1626

[24] Alimov Sh. A., Ashurov R. R., Pulatov A. K., “Kratnye ryady i integraly Fure”, Itogi nauki i tekhn. Ser. Sovr. Problemy matematiki. Fund. napravleniya., 42 (1989), 7–104

[25] Sobolevskii P. E., “O funktsiyakh Grina lyubykh (v chastnosti tselykh) stepenei ellipticheskikh operatorov”, Dokl. AN SSSR, 142:4 (1962), 804–807

[26] Ilin V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Uspekhi mat. Nauk, 15:2 (1960), 97–154