Mots-clés : optimal interpolation formula, optimal coefficients
@article{VKAM_2022_38_1_a7,
author = {Kh. M. Shadimetov and A. K. Boltaev and R. I. Parovik},
title = {Construction of optimal interpolation formula exact for trigonometric functions by {Sobolev's} method},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {131--146},
year = {2022},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/}
}
TY - JOUR AU - Kh. M. Shadimetov AU - A. K. Boltaev AU - R. I. Parovik TI - Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 131 EP - 146 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/ LA - en ID - VKAM_2022_38_1_a7 ER -
%0 Journal Article %A Kh. M. Shadimetov %A A. K. Boltaev %A R. I. Parovik %T Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 131-146 %V 38 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/ %G en %F VKAM_2022_38_1_a7
Kh. M. Shadimetov; A. K. Boltaev; R. I. Parovik. Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 131-146. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/
[1] Arqub O. Abu., “Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions”, Computers and Mathematics with Applications, 73 (2017), 1243–1261 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[2] Arqub O. Abu, Maayah B., “Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator Chaos”, Solitons and Fractals, 117 (2018), 117–124 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[3] Arqub O. Abu, Al-Smadi M., “Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions”, Numer Methods for Partial Differential Equations, 34 (2018), 1577–1597 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[4] Aronszajn N., “Theory of reproducing kernels”, Trans Am Math Soc, 68 (1950), 337–404 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[5] Berlinet A., Thomas-Agnan C., Reproducing Kernel Hilbert Space in Probability and Statistics, Springer, Dordrecht, 2004
[6] Boltaev A., Shadimetov Kh., Nuraliev F., “The extremal function of interpolation formulas in $W_2^{(2,0)}$ space”, Vestnik KRAUNC. Fiz.-mat. nauki, 36:3 (2021), 123–132 DOI: 10.26117/2079-6641-2021-36-3-123-132 | Zbl
[7] Cabada A., Hayotov A., Shadimetov Kh., “Construction of $D^m$-splines in $L_2^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[8] Hayotov A., “The discrete analogue of a differential operator and its applications”, Lithuanian Mathematical Journal, 54:2 (2014), 290–307 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[9] Hayotov A., “Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$”, Journal of Siberian Federal University. Mathematics and Physics, 11 (2018), 383–396 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[10] Hayotov A., Milovanović G., Shadimetov Kh., “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57 (2011), 487–510 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[11] A. Hayotov, G. Milovanović, Shadimetov Kh., “Optimal quadrature formulas and interpolation splines minimizing the semi-norm in $K_2(P_2)$ space”, Analytic Number Theory, Approximation Theory, and Special Functions, 2014, 573–611 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[12] Hayotov A., Milovanović G., Shadimetov Kh., “Interpolation splines minimizing a semi-norm”, Calcolo, 51 (2014), 245–260 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[13] Hayotov A., Milovanović G., Shadimetov Kh., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 259 (2015), 637–653 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[14] Novak E., Ullrich M., Woźniakowski H., Zhang Sh., “Reproducing kernels of Sobolev spaces on $\mathbb{R}^d$ and applications to embedding constants and tractability”, Analysis and Applications, 16 (2018), 693–715 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[15] Shadimetov Kh., Hayotov A., “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, Journal of Computational and Applied Mathematics, 235 (2011), 1114–1128 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[16] Shadimetov Kh., Hayotov A., “Construction of interpolation splines minimizing semi-norm in $W_2^{(m,m-1)}(0, 1)$ space”, BIT Numer Math, 53 (2013), 545–563 DOI: 10.26117/2079-6641-2020-32-3-42-54 | Zbl
[17] Shadimetov Kh., Hayotov A., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl
[18] Sobolev S. L., Introduction to the theory of cubature formulas, Nauka, Moscow, 1974, 808 pp. (In Russian)
[19] Sobolev S. L., “On interpolation of functions of $n$ variables, in: Selected works of S. L. Sobolev”, Springer US, 2006, 451–456 DOI: 10.26117/2079-6641-2020-32-3-42-54
[20] Sobolev S. L., “Formulas of mechanical cubature in $n$- dimensional space, in: Selected Works of S. L. Sobolev”, Springer US, 2006, 445–450 DOI: 10.26117/2079-6641-2020-32-3-42-54
[21] Sobolev S. L., “The coefficients of optimal quadrature formulas, in: Selected works of S. L. Sobolev”, Springer US, 2006, 561–566 DOI: 10.26117/2079-6641-2020-32-3-42-54
[22] Sobolev S. L., Vaskevich V. L., The theory of cubature formulas, Kluwer Academic Publishers Group, Dordrecht, 1997, 418 pp. | Zbl