Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 131-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to derivation of the optimal interpolation formula in $W_2^{(0,2)}(0,1)$ Hilbert space by Sobolev's method. Here the interpolation formula consists of a linear combination $\sum\limits_{\beta=0}^N C_\beta \phi (x_\beta)$ of the given values of a function $\phi$ from the space $W_2^{(0,2)}(0,1)$. The difference between functions and the interpolation formula is considered as a linear functional called the error functional. The error of the interpolation formula is estimated by the norm of the error functional. We obtain the optimal interpolation formula by minimizing the norm of the error functional by coefficients $C_\beta (z)$ of the interpolation formula. The obtained optimal interpolation formula is exact for trigonometric functions $\sin (x)$ and $\cos (x)$. At the end of the paper we give some numerical results which confirm the numerical convergence of the optimal interpolation formula.
Keywords: extremal function, error functional, Hilbert space, Sobolev's method.
Mots-clés : optimal interpolation formula, optimal coefficients
@article{VKAM_2022_38_1_a7,
     author = {Kh. M. Shadimetov and A. K. Boltaev and R. I. Parovik},
     title = {Construction of optimal interpolation formula exact for trigonometric functions by {Sobolev's} method},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {131--146},
     year = {2022},
     volume = {38},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/}
}
TY  - JOUR
AU  - Kh. M. Shadimetov
AU  - A. K. Boltaev
AU  - R. I. Parovik
TI  - Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 131
EP  - 146
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/
LA  - en
ID  - VKAM_2022_38_1_a7
ER  - 
%0 Journal Article
%A Kh. M. Shadimetov
%A A. K. Boltaev
%A R. I. Parovik
%T Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 131-146
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/
%G en
%F VKAM_2022_38_1_a7
Kh. M. Shadimetov; A. K. Boltaev; R. I. Parovik. Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 131-146. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a7/

[1] Arqub O. Abu., “Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions”, Computers and Mathematics with Applications, 73 (2017), 1243–1261 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[2] Arqub O. Abu, Maayah B., “Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator Chaos”, Solitons and Fractals, 117 (2018), 117–124 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[3] Arqub O. Abu, Al-Smadi M., “Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions”, Numer Methods for Partial Differential Equations, 34 (2018), 1577–1597 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[4] Aronszajn N., “Theory of reproducing kernels”, Trans Am Math Soc, 68 (1950), 337–404 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[5] Berlinet A., Thomas-Agnan C., Reproducing Kernel Hilbert Space in Probability and Statistics, Springer, Dordrecht, 2004

[6] Boltaev A., Shadimetov Kh., Nuraliev F., “The extremal function of interpolation formulas in $W_2^{(2,0)}$ space”, Vestnik KRAUNC. Fiz.-mat. nauki, 36:3 (2021), 123–132 DOI: 10.26117/2079-6641-2021-36-3-123-132 | Zbl

[7] Cabada A., Hayotov A., Shadimetov Kh., “Construction of $D^m$-splines in $L_2^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[8] Hayotov A., “The discrete analogue of a differential operator and its applications”, Lithuanian Mathematical Journal, 54:2 (2014), 290–307 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[9] Hayotov A., “Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$”, Journal of Siberian Federal University. Mathematics and Physics, 11 (2018), 383–396 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[10] Hayotov A., Milovanović G., Shadimetov Kh., “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57 (2011), 487–510 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[11] A. Hayotov, G. Milovanović, Shadimetov Kh., “Optimal quadrature formulas and interpolation splines minimizing the semi-norm in $K_2(P_2)$ space”, Analytic Number Theory, Approximation Theory, and Special Functions, 2014, 573–611 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[12] Hayotov A., Milovanović G., Shadimetov Kh., “Interpolation splines minimizing a semi-norm”, Calcolo, 51 (2014), 245–260 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[13] Hayotov A., Milovanović G., Shadimetov Kh., “Optimal quadratures in the sense of Sard in a Hilbert space”, Applied Mathematics and Computation, 259 (2015), 637–653 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[14] Novak E., Ullrich M., Woźniakowski H., Zhang Sh., “Reproducing kernels of Sobolev spaces on $\mathbb{R}^d$ and applications to embedding constants and tractability”, Analysis and Applications, 16 (2018), 693–715 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[15] Shadimetov Kh., Hayotov A., “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, Journal of Computational and Applied Mathematics, 235 (2011), 1114–1128 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[16] Shadimetov Kh., Hayotov A., “Construction of interpolation splines minimizing semi-norm in $W_2^{(m,m-1)}(0, 1)$ space”, BIT Numer Math, 53 (2013), 545–563 DOI: 10.26117/2079-6641-2020-32-3-42-54 | Zbl

[17] Shadimetov Kh., Hayotov A., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243 DOI: 10.26117/2079-6641-2020-32-3-42-54 | DOI | Zbl

[18] Sobolev S. L., Introduction to the theory of cubature formulas, Nauka, Moscow, 1974, 808 pp. (In Russian)

[19] Sobolev S. L., “On interpolation of functions of $n$ variables, in: Selected works of S. L. Sobolev”, Springer US, 2006, 451–456 DOI: 10.26117/2079-6641-2020-32-3-42-54

[20] Sobolev S. L., “Formulas of mechanical cubature in $n$- dimensional space, in: Selected Works of S. L. Sobolev”, Springer US, 2006, 445–450 DOI: 10.26117/2079-6641-2020-32-3-42-54

[21] Sobolev S. L., “The coefficients of optimal quadrature formulas, in: Selected works of S. L. Sobolev”, Springer US, 2006, 561–566 DOI: 10.26117/2079-6641-2020-32-3-42-54

[22] Sobolev S. L., Vaskevich V. L., The theory of cubature formulas, Kluwer Academic Publishers Group, Dordrecht, 1997, 418 pp. | Zbl