@article{VKAM_2022_38_1_a3,
author = {V. A. Galkin and T. V. Gavrilenko and A. D. Smorodinov},
title = {Some aspects of approximation and interpolation of functions artificial neural networks},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {54--73},
year = {2022},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/}
}
TY - JOUR AU - V. A. Galkin AU - T. V. Gavrilenko AU - A. D. Smorodinov TI - Some aspects of approximation and interpolation of functions artificial neural networks JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 54 EP - 73 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/ LA - ru ID - VKAM_2022_38_1_a3 ER -
%0 Journal Article %A V. A. Galkin %A T. V. Gavrilenko %A A. D. Smorodinov %T Some aspects of approximation and interpolation of functions artificial neural networks %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 54-73 %V 38 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/ %G ru %F VKAM_2022_38_1_a3
V. A. Galkin; T. V. Gavrilenko; A. D. Smorodinov. Some aspects of approximation and interpolation of functions artificial neural networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/
[1] Braun J., Griebel M., “On a constructive proof of Kolmogorov’s superposition theorem”, Constructive Approximation journal, 30 (2009), 653 doi:10.1007/s00365-009-9054-2 | DOI
[2] Cybenko, G. V., “Approximation by Superpositions of a Sigmoidal function”, Mathematics of Control Signals and Systems, 2 (1989), 303–314 | DOI | Zbl
[3] Sprecher, David A., “On the Structure of Continuous Functions of Several Varia”, Trans. Amer. Math. Soc., 1965, 340–355 | DOI | Zbl
[4] Funahashi K., “On the Approximate Realization of Continuous Mappings by Neural Networks”, Neural Networks, 2 (1989), 183–192 | DOI
[5] He K., Zhang X., Ren S., Sun J., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, arXiv:1502.01852, 2015
[6] Liang S., Srikant R., “Why deep neural networks for function approximation?”, Published as a conference paper at ICLR, 2017
[7] Hanin B., “Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations”, Mathematics, 7 (2019), 992 | DOI
[8] Liu B., Liang Y., “Optimal function approximation with ReLU neural networks”, Neurocomputing, 435 (2021), 216–227 | DOI
[9] Almira J. M., Lopez-de-Teruel P. E., Romero-López D. J., Voigtlaender F., “Negative results for approximation using single layer and multilayer feedforward neural networks”, Journal of Mathematical Analysis and Applications, 494:1 (2021), 124584 | DOI | Zbl
[10] Guliyev N. J., Ismailov V. E., “On the approximation by single hidden layer feedforward neural networks with fixed weights”, Neural Networks, 98 (2018), 296–304 | DOI | Zbl
[11] Guliyev N. J., Ismailov V. E., “Approximation capability of two hidden layer feedforward neural networks with fixed weights”, Neurocomputing, 316 (2018), 262–269 | DOI
[12] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsiy mnogikh peremennykh v vide superpozitsii nepreryvnykh funktsiy odnoy peremennoy”, Doklady AN SSSR, 114 (1957), 953-956 (In Russian) | Zbl
[13] Arnold V. I., “O predstavlenii funktsiy neskol'kikh peremennykh v vide superpozitsii funktsiy men'shego chisla peremennykh”, Matematicheskoye prosveshcheniye, 3 (1958), 41–61 (In Russian) | Zbl