Some aspects of approximation and interpolation of functions artificial neural networks
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 54-73
Voir la notice de l'article provenant de la source Math-Net.Ru
The article deals with the issues of approximation and interpolation of functions f(x) = |x|, f(x) = sin(x), f(x) =1/(1+25x²) with the help of neural networks from those constructed on the basis of the Kolmogorov-Arnold and Tsybenko theorems. problems in training a neural network based on the initialization of weight coefficients in a random way are shown. The possibility of training a neural network to work with a variety is shown.
Keywords:
approximation of functions, interpolation of functions, artificial neural networks, Tsybenko's theorem, Kolmogorov-Arnold's theorem.
@article{VKAM_2022_38_1_a3,
author = {V. A. Galkin and T. V. Gavrilenko and A. D. Smorodinov},
title = {Some aspects of approximation and interpolation of functions artificial neural networks},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {54--73},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/}
}
TY - JOUR AU - V. A. Galkin AU - T. V. Gavrilenko AU - A. D. Smorodinov TI - Some aspects of approximation and interpolation of functions artificial neural networks JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 54 EP - 73 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/ LA - ru ID - VKAM_2022_38_1_a3 ER -
%0 Journal Article %A V. A. Galkin %A T. V. Gavrilenko %A A. D. Smorodinov %T Some aspects of approximation and interpolation of functions artificial neural networks %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 54-73 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/ %G ru %F VKAM_2022_38_1_a3
V. A. Galkin; T. V. Gavrilenko; A. D. Smorodinov. Some aspects of approximation and interpolation of functions artificial neural networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/