Some aspects of approximation and interpolation of functions artificial neural networks
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 54-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the issues of approximation and interpolation of functions f(x) = |x|, f(x) = sin(x), f(x) =1/(1+25x²) with the help of neural networks from those constructed on the basis of the Kolmogorov-Arnold and Tsybenko theorems. problems in training a neural network based on the initialization of weight coefficients in a random way are shown. The possibility of training a neural network to work with a variety is shown.
Keywords: approximation of functions, interpolation of functions, artificial neural networks, Tsybenko's theorem, Kolmogorov-Arnold's theorem.
@article{VKAM_2022_38_1_a3,
     author = {V. A. Galkin and T. V. Gavrilenko and A. D. Smorodinov},
     title = {Some aspects of approximation and interpolation of functions artificial neural networks},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {54--73},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/}
}
TY  - JOUR
AU  - V. A. Galkin
AU  - T. V. Gavrilenko
AU  - A. D. Smorodinov
TI  - Some aspects of approximation and interpolation of functions artificial neural networks
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 54
EP  - 73
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/
LA  - ru
ID  - VKAM_2022_38_1_a3
ER  - 
%0 Journal Article
%A V. A. Galkin
%A T. V. Gavrilenko
%A A. D. Smorodinov
%T Some aspects of approximation and interpolation of functions artificial neural networks
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 54-73
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/
%G ru
%F VKAM_2022_38_1_a3
V. A. Galkin; T. V. Gavrilenko; A. D. Smorodinov. Some aspects of approximation and interpolation of functions artificial neural networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a3/