@article{VKAM_2022_38_1_a2,
author = {T. K. Yuldashev},
title = {On a nonlocal problem for impulsive differential equations with mixed maxima},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {40--53},
year = {2022},
volume = {38},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a2/}
}
T. K. Yuldashev. On a nonlocal problem for impulsive differential equations with mixed maxima. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 40-53. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a2/
[1] Anguraj A., Arjunan M. M., “Existence and uniqueness of mild and classical solutions of impulsive evolution equations”, Elect. J. of Differential Equations, 2005:111 (2005), 1–8
[2] Ashyralyev A., Sharifov Y. A., “Existence and uniqueness of solutions for nonlinear impulsive differential equations with two–point and integral boundary conditions”, Advances in Difference Equations, 2013:173 (2013) DOI: 10.1186/1687-1847-2013-173
[3] Bin L., Xinzhi L., Xiaoxin L., “Robust global exponential stability of uncertain impulsive systems”, Acta Mathematika Scientia, 25:1 (2005), 161–169 | DOI | Zbl
[4] Benchohra M., Henderson J., Ntouyas S. K., Impulsive differential equations and inclusions. Contemporary mathematics and its application, Hindawi Publishing Corporation, New York, 2006
[5] Boichuk A. A., Samoilenko A. M., Generalized inverse operators and Fredholm boundary-value problems (2nd ed.), Walter de Gruyter GmbH, Berlin - Boston, 2016, 314p. pp.
[6] Boichuk A. A., Samoilenko A. M., Generalized inverse operators and fredholm boundary-value problems, Brill, Utrecht, 2004
[7] Ji Sh., Wen Sh., “Nonlocal cauchy problem for impulsive differential equations in Banach spaces”, Intern. J. of Nonlinear Science, 10:1 (2010), 88–95 | Zbl
[8] Halanay A., Veksler D., Teoria calitativa a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968 | Zbl
[9] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of impulsive differential equations, World Scientific, Singapore, 1989, 434 p. pp. | Zbl
[10] Perestyk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V., Differential equations with impulse effect: multivalued right-hand sides with discontinuities. DeGruyter Stud. V.40. Math., Walter de Gruter Co., Berlin, 2011
[11] Samoilenko A. M., Perestyk N. A., Impulsive differential equations, World Sci., Singapore, 1995 | Zbl
[12] Ashyralyev A., Sharifov Y. A., “Optimal control problems for impulsive systems with integral boundary conditions”, Elect. J. of Differential Equations, 2013:80 (2013), 1–11 DOI: 10.1063/1.4747627
[13] Djamalov S. Z., Ashurov R. R., Turakulov H. Sh., “On a semi-nonlocal boundary value problem for the three-dimensional Tricomi equation of an unbounded prismatic domain”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 35:2 (2021), 8–16, (In Russian) DOI: 10.26117/2079-6641-2021-35-2-8-16
[14] Li M., Han M., “Existence for neutral impulsive functional differential equations with nonlocal conditions”, Indagationes Mathematcae, 20:3 (2009), 435–451 | DOI | Zbl
[15] Mardanov M. J., Sharifov Y. A., Molaei H. H., “Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions”, Electr. J. of Differential Equations, 2014:259 (2014), 1–8
[16] Sharifov Ya. A., “Optimal control for systems with impulsive actions under nonlocal boundary conditions”, Russian Mathematics (Izv. VUZ), 57:2 (2013), 65–72 | DOI | Zbl
[17] Sharifov Y. A., “Conditions optimality in problems control with systems impulsive differential equations with nonlocal boundary conditions”, Ukrainain Math. Journ., 64:6 (2012), 836–847 | Zbl
[18] Sharifov Ya. A., “Optimal control problem for systems with impulsive actions under nonlocal boundary conditions”, Vestnik Samarskogo Gos. Tekhn. Univ. Seria: Fiziko-matem. nauki, 33:4 (2013), 34–45 (In Russian) | DOI | Zbl
[19] Sharifov Y. A., Mammadova N. B., “Optimal control problem described by impulsive differential equations with nonlocal boundary conditions”, Differential equations, 50:3 (2014), 403–411 | DOI | Zbl
[20] Yuldashev T. K., “Solvability of a boundary value problem for a differential equation of the Boussinesq type”, Differential equations, 54:10 (2018), 1384–1393 DOI: 10.1134/S0012266118100099 | DOI | Zbl
[21] Yuldashev T. K., “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential equations, 54:12 (2018), 1646–1653 10.1134/S0012266118120108 | DOI | Zbl
[22] Yuldashev T. K., “Nonlocal mixed-value problem for a Boussinesq-type integro-differential equation with degenerate kernel”, Ukrainian Mathematical Journal, 68:8 (2016), 1278–1296 DOI: 10.1007/s11253-017-1293-y | DOI
[23] Yuldashev T. K., “Nonlocal problem for a mixed type differential equation in rectangular domain”, Proceedings of the Yerevan state univers. Physical and Mathematical Sciences, 2016, no. 3, 70–78 | Zbl
[24] Yuldashev T. K., “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii Journal of Mathematics, 40:12 (2019), 2116–2123 DOI: 10.1134/S1995080219120138 | DOI | Zbl