Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 9-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two versions of the generalized nonlocal Ginzburg-Landau equation are considered. Both of these options are studied together with the homogeneous Dirichlet boundary conditions. For the corresponding initial-boundary value problems, the existence of solutions is shown for all positive values of the evolution variable. For solutions to initial-boundary value problems, explicit formulas are obtained in the form of Fourier series. The properties of solutions of the corresponding initial-boundary value problems are studied. In the second part of the work, the question of the existence of global attractors for solutions to the studied boundary value problems is considered. The question of the properties of global attractors is studied. In particular, an answer is given about the Euclidean dimension of such attractors. Sufficient conditions are given under which the global attractor will be finite-dimensional. A variant of the nonlocal Ginzburg-Landau equation is distinguished, when the global attractor is infinite-dimensional.
Keywords: nonlocal Ginzburg-Landau equation, boundary and initial boundary value problems, global solvability, invariant manifolds, global attractors, structure of global attractors.
Mots-clés : dimension
@article{VKAM_2022_38_1_a0,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Invariant manifolds and the global attractor of the generalised nonlocal {Ginzburg-Landau} equation in the case of homogeneous dirichlet boundary conditions},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {9--27},
     year = {2022},
     volume = {38},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 9
EP  - 27
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/
LA  - ru
ID  - VKAM_2022_38_1_a0
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 9-27
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/
%G ru
%F VKAM_2022_38_1_a0
A. N. Kulikov; D. A. Kulikov. Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 9-27. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/

[1] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin., 1984, 158 pp.

[2] Aronson I. S., Kramer L., “The world of the complex Ginzburg-Landau equation”, Rev. Mod. Phys., 74 (2002), 99–143 DOI: 10.1103/RevModPhys.74.99 | DOI

[3] Bartuccelli M., Constantin P., Doering C. R., Gibbon J. D., Gisselfalt M., “On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation”, Physica D, 44:3 (1990), 421–444 DOI: 10.1016/0167-2789(90)90156-J | DOI

[4] Scheuer J., Malomed B.A., “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Physica D, 161:1-2 (2002), 102-115 DOI: 10.1016/S0167-2789(01)00363-3 | DOI

[5] Malinetskiy G. G., Potapov A. B., Podlazov A. V., Nelineyniya dinamica. Podchody, resultaty, nadezhdy [Nonlinear dynamics. Approaches, results, hopes], Editorial URSS, Moscow, 1971, 436 pp. (In Russian)

[6] Whitham G. B., Lineyniye i nelineyniye volny [Linear and Nonlinear Waves], Mir, Moscow, 1977, 622 pp. (In Russian)

[7] Elmer F. J., “Nonlinear and nonlocal dynamics of spatially extended systems: stationary states, bifurcations and stability”, Physica D, 30:3 (1998), 321-341 DOI: 10.1016/0167-2789(88)90024-3 | DOI

[8] Duan J., Hung V.L. Titi E.S., “The effect of nonlocal interactions on the dynamics of the Ginzburg–Landau equation”, ZAMP, 47 (1996), 432-455 DOI: 10.1007/BF00916648

[9] Kulikov A., Kulikov D., “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Mathematical Methods in the Applied Sciences, 44 (2021), 11985-11997 DOI: 10.1002/mma.7103 | DOI

[10] Kulikov A. N., Kulikov D. A., “Invariant Manifolds of a Weakly Dissipative Version of the Nonlocal Ginzburg–Landau Equation”, Automation and Remote Control, 82:2 (2021), 264-277 DOI: 10.1134/S0005117921020065 | DOI

[11] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, 1997, 650 pp.

[12] Babin A. V., Vishik M. I., Attractory evolutsionych uravneliy [Attractors of Evolution Equations], Nauka, Moskva, 1989, 293 pp. (In Russian)

[13] Mizohata S., Teoriya uravneniy s chastnimi proisvodnymi [The Theory of Partial Differential Equations], Nauka, Moscow, 1977, 504 pp. (In Russian)

[14] Segal I., “Nonlinear semigroups”, Ann. of Mathematics, 78 (1963), 339-364 | DOI

[15] “Solvability of the Cauchy problem for abstract second-order quasilinear hyperbolic equations and their applications”, Trudy MMO, 23 (1970), 37-60 (In Russian)

[16] Lineyniye differentsialniye uravneniya v banachovom prostranstve [Linear differential equations in a Banach space], Nauka, Moskva, 1967, 464 pp. (In Russian)

[17] Sobolevskii P. E., “On equations of parabolic type in a Banach space”, Trudy MMO, 19 (1961), 297-350 (In Russian)