Mots-clés : dimension
@article{VKAM_2022_38_1_a0,
author = {A. N. Kulikov and D. A. Kulikov},
title = {Invariant manifolds and the global attractor of the generalised nonlocal {Ginzburg-Landau} equation in the case of homogeneous dirichlet boundary conditions},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {9--27},
year = {2022},
volume = {38},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 9 EP - 27 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/ LA - ru ID - VKAM_2022_38_1_a0 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 9-27 %V 38 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/ %G ru %F VKAM_2022_38_1_a0
A. N. Kulikov; D. A. Kulikov. Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 38 (2022) no. 1, pp. 9-27. http://geodesic.mathdoc.fr/item/VKAM_2022_38_1_a0/
[1] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin., 1984, 158 pp.
[2] Aronson I. S., Kramer L., “The world of the complex Ginzburg-Landau equation”, Rev. Mod. Phys., 74 (2002), 99–143 DOI: 10.1103/RevModPhys.74.99 | DOI
[3] Bartuccelli M., Constantin P., Doering C. R., Gibbon J. D., Gisselfalt M., “On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation”, Physica D, 44:3 (1990), 421–444 DOI: 10.1016/0167-2789(90)90156-J | DOI
[4] Scheuer J., Malomed B.A., “Stable and chaotic solutions of the complex Ginzburg–Landau equation with periodic boundary conditions”, Physica D, 161:1-2 (2002), 102-115 DOI: 10.1016/S0167-2789(01)00363-3 | DOI
[5] Malinetskiy G. G., Potapov A. B., Podlazov A. V., Nelineyniya dinamica. Podchody, resultaty, nadezhdy [Nonlinear dynamics. Approaches, results, hopes], Editorial URSS, Moscow, 1971, 436 pp. (In Russian)
[6] Whitham G. B., Lineyniye i nelineyniye volny [Linear and Nonlinear Waves], Mir, Moscow, 1977, 622 pp. (In Russian)
[7] Elmer F. J., “Nonlinear and nonlocal dynamics of spatially extended systems: stationary states, bifurcations and stability”, Physica D, 30:3 (1998), 321-341 DOI: 10.1016/0167-2789(88)90024-3 | DOI
[8] Duan J., Hung V.L. Titi E.S., “The effect of nonlocal interactions on the dynamics of the Ginzburg–Landau equation”, ZAMP, 47 (1996), 432-455 DOI: 10.1007/BF00916648
[9] Kulikov A., Kulikov D., “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Mathematical Methods in the Applied Sciences, 44 (2021), 11985-11997 DOI: 10.1002/mma.7103 | DOI
[10] Kulikov A. N., Kulikov D. A., “Invariant Manifolds of a Weakly Dissipative Version of the Nonlocal Ginzburg–Landau Equation”, Automation and Remote Control, 82:2 (2021), 264-277 DOI: 10.1134/S0005117921020065 | DOI
[11] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, 1997, 650 pp.
[12] Babin A. V., Vishik M. I., Attractory evolutsionych uravneliy [Attractors of Evolution Equations], Nauka, Moskva, 1989, 293 pp. (In Russian)
[13] Mizohata S., Teoriya uravneniy s chastnimi proisvodnymi [The Theory of Partial Differential Equations], Nauka, Moscow, 1977, 504 pp. (In Russian)
[14] Segal I., “Nonlinear semigroups”, Ann. of Mathematics, 78 (1963), 339-364 | DOI
[15] “Solvability of the Cauchy problem for abstract second-order quasilinear hyperbolic equations and their applications”, Trudy MMO, 23 (1970), 37-60 (In Russian)
[16] Lineyniye differentsialniye uravneniya v banachovom prostranstve [Linear differential equations in a Banach space], Nauka, Moskva, 1967, 464 pp. (In Russian)
[17] Sobolevskii P. E., “On equations of parabolic type in a Banach space”, Trudy MMO, 19 (1961), 297-350 (In Russian)