@article{VKAM_2021_37_4_a5,
author = {A. V. Yuldasheva},
title = {Initial data problem for an equation related to a peridynamic model in a two-dimensional domain},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {45--52},
year = {2021},
volume = {37},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a5/}
}
TY - JOUR AU - A. V. Yuldasheva TI - Initial data problem for an equation related to a peridynamic model in a two-dimensional domain JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 45 EP - 52 VL - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a5/ LA - ru ID - VKAM_2021_37_4_a5 ER -
A. V. Yuldasheva. Initial data problem for an equation related to a peridynamic model in a two-dimensional domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 45-52. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a5/
[1] Alimov Sh. A., Yuldasheva A. V., “O razreshimosti peridinamicheskogo uravneniya s singulyarnym yadrom”, Differentsial'nyye uravneniya, 57:3 (2021), 375-386 (In Russian) | Zbl
[2] Du Q., Kamm J. R., Lehoucq R. B., Parks Michael L., “A new approach for a nonlocal, nonlinear conservation law”, SIAM J. Appl. Math., 72:1 (2012), 464–487 | DOI | Zbl
[3] Alimov S. A., Cao Y., Ilhan O. A., “On the problems of peridynamics with special convolution kernels”, J. of Integral Equations and Applications, 26 (2014), 301-321 | DOI | Zbl
[4] Alimov S. A., Sheraliev S., “On the solvability of the singular equation of peridynamics”, Complex Variables and Elliptic Equations, 2019, no. 5, 873-887 | DOI | Zbl
[5] Yuldasheva A. V., “On Solvability of One Singular Equation of Peridynamics”, Lob. J. Math., 41:6 (2020), 1131–1136 | Zbl
[6] Nikol'skiy S. M., Approximation of functions of several variables and imbedding theorems, New York: Springer-Verlag, Grundl. Math. Wissensch, 1975, 418 pp.