Steklov problem of the first class for a fractional order delay differential equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 30-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution to the Steklov problem with conditions of the first class for a linear delay differential equation with a Gerasimov-Caputo fractional derivative is obtained by Green function method. The existence and uniqueness theorem to the problem is proved.
Keywords: fractional differential equation, delay differential equation, Green function method, generalized Mittag-Leffler function.
@article{VKAM_2021_37_4_a3,
     author = {M. G. Mazhgikhova},
     title = {Steklov problem of the first class for a fractional order delay differential equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {30--37},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a3/}
}
TY  - JOUR
AU  - M. G. Mazhgikhova
TI  - Steklov problem of the first class for a fractional order delay differential equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 30
EP  - 37
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a3/
LA  - ru
ID  - VKAM_2021_37_4_a3
ER  - 
%0 Journal Article
%A M. G. Mazhgikhova
%T Steklov problem of the first class for a fractional order delay differential equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 30-37
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a3/
%G ru
%F VKAM_2021_37_4_a3
M. G. Mazhgikhova. Steklov problem of the first class for a fractional order delay differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 30-37. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a3/

[1] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, Moskva, 2003, 272 pp. (in Russian)

[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Factional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.

[3] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp. (in Russian)

[4] Oldham K. B., Spanier J., The fractional calculus, Acad. press., N.-Y. L., 1974, 234 pp. | Zbl

[5] Barrett J. H., “Differential equation of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | Zbl

[6] Bellman R. E., Cooke K. L., Differential-Difference Equations, Acad. Press., New York. London., 1963, 462 pp. | Zbl

[7] Hale J. K, Lunel S. M. V., Introduction to Functional Differential Equations, Springer, New York. London., 1993, 449 pp. | Zbl

[8] El'sgol'ts L. E., Norkin S. B., Vvedeniye v teoriyu differentsial'nykh uravneniy s otklonyayushchimsya argumentom, Nauka, Moskva, 1971, 296 pp. (in Russian)

[9] Myshkis A. D., Lineynyye differentsial'nyye uravneniya s zapazdyvayushchim argumentom, Nauka, Moskva, 1972, 351 pp. (in Russian)

[10] Mazhgikhova M. G., “Nachal'naya i krayevaya zadachi dlya obyknovennogo differentsial'nogo uravneniya drobnogo poryadka s zapazdyvayushchim argumentom”, Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 3:1 (1968), 27–37 (in Russian)

[11] Mazhgikhova M. G., “Dirichlet problem for a fractional-order ordinary differential equation with retarded argument”, Differential equations, 54:2 (2018), 187–194 | DOI | Zbl

[12] Mazhgikhova M. G., “Zadacha Neymana dlya obyknovennogo differentsial'nogo uravneniya drobnogo poryadka s zapazdyvayushchim argumentom”, Izvestiya KBNTS RAN, 70:2 (2018), 15–20 (in Russian)

[13] Mazhgikhova M. G., “Krayevaya zadacha so smeshcheniyem dlya differentsial'nogo uravneniya drobnogo poryadka s zapazdyvayushchim argumentom”, Vestnik KRAUNTS. Fiziko-matematicheskiye nauki, 28:3 (2018), 16–25 (in Russian)

[14] Nakhushev A. M., Zadachi so smeshcheniyem dlya uravneniy v chastnykh proizvodnykh, Nauka, Moskva, 2006, 287 pp. (in Russian)

[15] Prabhakar T. R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | Zbl