Inner boundary value problem with an integral condition for fractional diffusion equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 24-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.
Mots-clés :
fractional diffusion equation
Keywords: Riemann — Liouville operator, Green's function, integral condition.
Keywords: Riemann — Liouville operator, Green's function, integral condition.
@article{VKAM_2021_37_4_a2,
author = {F. M. Losanova},
title = {Inner boundary value problem with an integral condition for fractional diffusion equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {24--29},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/}
}
TY - JOUR AU - F. M. Losanova TI - Inner boundary value problem with an integral condition for fractional diffusion equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 24 EP - 29 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/ LA - ru ID - VKAM_2021_37_4_a2 ER -
F. M. Losanova. Inner boundary value problem with an integral condition for fractional diffusion equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 24-29. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/