Inner boundary value problem with an integral condition for fractional diffusion equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 24-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.
Mots-clés : fractional diffusion equation
Keywords: Riemann — Liouville operator, Green's function, integral condition.
@article{VKAM_2021_37_4_a2,
     author = {F. M. Losanova},
     title = {Inner boundary value problem with an integral condition for fractional diffusion equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {24--29},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/}
}
TY  - JOUR
AU  - F. M. Losanova
TI  - Inner boundary value problem with an integral condition for fractional diffusion equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 24
EP  - 29
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/
LA  - ru
ID  - VKAM_2021_37_4_a2
ER  - 
%0 Journal Article
%A F. M. Losanova
%T Inner boundary value problem with an integral condition for fractional diffusion equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 24-29
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/
%G ru
%F VKAM_2021_37_4_a2
F. M. Losanova. Inner boundary value problem with an integral condition for fractional diffusion equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 24-29. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a2/

[1] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, M., 2003, 272 pp. (In Russian)

[2] Murray J., Nelineynyye differentsial'nyye uravneniya v biologii. Lektsii o modelyakh. Per. s angl. V.G. Babskogo), Mir, M., 1983, 399 pp. (In Russian)

[3] Potapov A. A., “Fraktal'nyy metod, fraktal'naya paradigma i metod drobnykh proizvodnykh v yestestvoznanii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2012, no. 5(2), 172-180 (In Russian)

[4] Rekhviashvili S. Sh., “K opredeleniyu fizicheskogo smysla drobnogo integro-differentsirovaniya”, Nelineynyy mir, 5:4 (2007), 194-198 (In Russian)

[5] Nakhushev A. M., Uravneniya matematicheskoy biologii, Vyssh. shk., M., 1995, 301 pp. (In Russian)

[6] Kochubei A. N., Eidelman S. D., “Zadacha Koshi dlya evolyutsionnykh uravneniy drobnogo poryadka”, Dokl. RAN, 394:2 (2004), 159-161 (In Russian) | Zbl

[7] Mainardi F., “Fractional relaxation-oscillation and fractional diffusion-wave phenomena”, Chaos Solitons Fractals, 7:9 (1996), 1461-1477 | DOI | Zbl

[8] Pskhu A. V., “Resheniye krayevykh zadach dlya uravneniya diffuzii drobnogo poryadka metodom funktsii Grina”, Differential Equations, 39:10 (2003), 1430-1433 (In Russian) | Zbl

[9] Pskhu A. V., “Resheniye pervoy krayevoy zadachi dlya uravneniya diffuzii drobnogo poryadka”, Differential Equations, 39:9 (2003), 1286-1289 (In Russian) | Zbl

[10] Losanova F. M., “Zadacha s usloviyem Samarskogo dlya uravneniya drobnoy diffuzii v polupolose”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2015, no. 2(11), 17-21 (In Russian) | Zbl

[11] Losanova F. M., “Zadacha s lokal'nym smeshcheniyem dlya uravneniya drobnoy diffuzii”, Vestnik KRAUNTS. Fiz.-mat. nauki, 29:4 (2019), 28-34 (In Russian) | Zbl

[12] Nakhushev A. M., Zadachi so smeshcheniyem dlya uravneniya v chastnykh prozvodnykh, Nauka, M., 2006, 287 pp. (In Russian)

[13] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. (In Russian)

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnyye drobnogo poryadka i nekotoryye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. (In Russian)

[15] Ilyin V. A., Moiseev E. I., “Nelokal'naya krayevaya zadacha dlya operatora Shturma-Liuvillya v differentsial'noy i raznostnoy traktovkakh”, Dokl. AN SSSR, 291:3 (1986), 534-538 (In Russian)

[16] Ilyin V. A., Moiseev E. I., “Nelokal'naya krayevaya zadacha vtorogo roda dlya operatora Shturma-Liuvillya”, Differentsial'nyye uravneniya yr 1987, 23:8, 1422-1431 (In Russian)

[17] Losanova F. M., “Vnutrennekrayevaya zadacha dlya uravneniya drobnoy diffuzii”, Dokl. Adygskoy (Cherkesskoy) mezhdunarodnoy akademii nauk, 20:3 (2020), 14-18 (In Russian)

[18] Tricomi F., Integral'nyye uravneniya, Izd-vo inostr. lit-ry, Moskva, 1960, 300 pp. (In Russian)