The spatial and temporal variability of convective instability in the south of western siberia according to era5 reanalysis data
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 203-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A comparative analysis of the spatio-temporal variability of convective instability in the south of Western Siberia according to the K-Index and Total Totals index obtained from the ERA5 reanalysis is presented. Related to both indices, the Kulunda plain and the upper Irtysh River floodplain have the highest level of convective instability in the south of Western Siberia. In addition, high index values are observed over the southeastern Urals and the northeastern Vasyugan plain. The northern boundary extends to 62◦ and 61◦ N, respectively, with KIQ1 \ge 30 ◦C and TTQ1 \ge 50 ◦C, indicating a thunderstorm probability greater than 70
Mots-clés : convection
Keywords: instability indices, K-index, Total Totals index, thunderstorm, ERA5 reanalysis.
@article{VKAM_2021_37_4_a18,
     author = {K. N. Pustovalov and V. P. Gorbatenko and P. M. Nagorskiy and O. E. Nechepurenko},
     title = {The spatial and temporal variability of convective instability in the south of western siberia according to era5 reanalysis data},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {203--215},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a18/}
}
TY  - JOUR
AU  - K. N. Pustovalov
AU  - V. P. Gorbatenko
AU  - P. M. Nagorskiy
AU  - O. E. Nechepurenko
TI  - The spatial and temporal variability of convective instability in the south of western siberia according to era5 reanalysis data
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 203
EP  - 215
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a18/
LA  - ru
ID  - VKAM_2021_37_4_a18
ER  - 
%0 Journal Article
%A K. N. Pustovalov
%A V. P. Gorbatenko
%A P. M. Nagorskiy
%A O. E. Nechepurenko
%T The spatial and temporal variability of convective instability in the south of western siberia according to era5 reanalysis data
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 203-215
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a18/
%G ru
%F VKAM_2021_37_4_a18
K. N. Pustovalov; V. P. Gorbatenko; P. M. Nagorskiy; O. E. Nechepurenko. The spatial and temporal variability of convective instability in the south of western siberia according to era5 reanalysis data. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 203-215. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a18/

[1] Shmeter S. M., Termodinamika i fizika konvektivnykh oblakov, Gidrometeoizdat, L., 1987, 288 pp. (In Russian)

[2] Rakov V. A., Uman M. A., Lightning: Physics and Effects, Cambridge Univ. Press, New York, 2003, 687 pp.

[3] Vel'tishchev N. F., Stepanenko V. M., Mezometeorologicheskiye protsessy, MGU, M., 2006, 101 pp.

[4] Andreeva E. S., Opasnyye yavleniya pogody yuga Rossii, RSHU, SPb., 2006, 216 pp. (In Russian)

[5] Bluestein H. B., Severe Convective Storms and Tornadoes: Observations and Dynamics, Springer-Verlag, Berlin, Heidelberg, 2013, 456 pp.

[6] Mokhov I. I., Akperov M. G., “Tropospheric lapse rate and its relation to surface temperature from reanalysis data”, Izvestiya. Atmospheric and Oceanic Physics, 42:4 (2006), 430-438 | DOI

[7] Chernokulsky A. V., Bulygina O. N., Mokhov I. I., “Recent variations of cloudiness over Russia from surface daytime observations”, Environ. Research Letters, 6:3 (2011), 035202 | DOI

[8] Vtoroy otsenochnyy doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoy Federatsii, Rosgidromet, M., 2014, 1008 pp. (In Russian)

[9] Gorbatenko V. P., Kuzhevskaya I. V., Pustovalov K. N., Chursin V. V., Konstantinova D. A., “Assessment of atmospheric convective potential variability in Western Siberia in changing climate”, Russian Meteorology and Hydrology, 45:5 (2020), 360-367 | DOI

[10] Gorbatenko V. P., Tunaev E. L., Pustovalov K. N., Volkova M. A., Nechepurenko O. E., “Izmeneniya tsiklogeneza nad Zapadnoy Sibir'yu v 1976–2017 gg.”, Fundamental'naya i prikladnaya klimatologiya, 2 (2020), 35-57 (In Russian)

[11] Borovko I. V., Krupchatnikov V. N., “Matematicheskoye modelirovaniye reaktsii tsirkulyatsii Gadleya i stratifikatsii vnetropicheskoy troposfery na izmeneniya klimata s pomoshch'yu spektral'noy modeli obshchey tsirkulyatsii atmosfery”, SibZHVM, 18:1 (2015), 27-40 (In Russian)

[12] Kurganskiy M. V., Chernokul'skiy A. V., Mokhov I. I., “Smerch pod Khanty-Mansiyskom: poka isklyucheniye ili uzhe simptom”, Meteorologiya i gidrologiya, 2013, no. 8, 40-50 (In Russian)

[13] Chernokulsky A. V., et al., “Tornadoes in northern Eurasia: From the middle age to the information ERA”, Monthly Weather Review, 148 (2020), 3081-3110 | DOI

[14] Chernokulsky A. V., et al., “Tornadoes in the Russian regions”, Russian Meteorology and Hydrology, 46:2 (2021), 69-82 | DOI

[15] Glazunov A. V., Dymnikov V. P., “Spatial spectra and characteristic horizontal scales of temperature and velocity fluctuations in the convective boundary layer of the atmosphere”, Izvestiya. Atmospheric and Oceanic Physics, 49:1 (2013), 33-54 | DOI

[16] Gorbatenko V.P., Dul'zon A.A., “Vliyaniye izmeneniya podstilayushchey poverkhnosti na grozovuyu aktivnost'”, Geografiya i prirodnyye resursy, 1997, no. 2, 142-146 (In Russian)

[17] Sedunov YU. S , et al., Atmosfera. Spravochnik, Gidrometeoizdat, L., 1991, 508 pp. (In Russian)

[18] Showalter A. K., “A stability index for forecasting thunderstorms”, Bulletin of the American Meteorological Society, 1947, no. 34, 250-252

[19] Galway J. G., “The Lifted index as a predictor of latent instability”, Bulletin of the American Meteorological Society, 3 (1956), 528-529 | DOI

[20] George J. J., Weather forecasting for aeronautics, Academic Press, New York, London, 1960, 684 pp.

[21] Blanchard D. O., “Assessing the vertical distribution of convective available potential energy”, Weather Forecasting, 1998, no. 13, 870-877 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[22] Miller R. C., Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central, USAF, Headquarters, Air Weather Service, 1972, 190 pp.

[23] Gubenko I. M., Rubinshtein K. G., “Analysis of the results of thunderstorm forecasting based on atmospheric instability indices using the WRF-ARW numerical model data”, Russian Meteorology and Hydrology, 40:1 (2015), 16-24 | DOI

[24] Gorbatenko V. P., Nechepurenko O. Ye., Krechetova S. YU., Belikova M. YU., “Verifikatsiya parametrov neustoychivosti atmosfery, vosstanovlennykh po dannym spektroradiometra MODIS/Terra dannymi aerologicheskogo zondirovaniya”, Optika atmosfery i okeana, 29:7 (2016), 603-607 (In Russian)

[25] Bykov A. V., Vetrov A. L., Kalinin N. A., “Prognoz opasnykh konvektivnykh yavleniy v Permskom kraye s ispol'zovaniyem global'nykh prognosticheskikh modeley”, Trudy Gidromettsentra Rossii, 363 (2017), 101-119 (In Russian)

[26] Chernokulsky A. V., Kurgansky M. V., Mokhov I. I., “Analysis of changes in tornadogenesis conditions over Northern Eurasia based on a simple index of atmospheric convective instability”, Doklady Earth Sciences, 477:2 (2017), 1504-1509 | DOI

[27] Nechepurenko O. Ye., Gorbatenko V. P., Konstantinova D. A., Sevast'yanov V. V., “Indeksy neustoychivosti atmosfery i ikh porogovyye znacheniya, optimal'nyye dlya prognoza groz nad Sibir'yu”, Gidrometeorologicheskiye issledovaniya i prognozy, 2018, no. 2(368), 44-59 (In Russian)

[28] Sivkov B. A., Kalinin N. A., “Osobennosti termodinamicheskogo sostoyaniya atmosfery pri sil'nykh osadkakh na territorii Permskogo kraya”, Gidrometeorologicheskiye issledovaniya i prognozy, 2020, no. 1(375), 83-95 (In Russian)

[29] Gubenko I. M., Rubinshteyn K. G., “Testirovaniye kompleksnogo metoda prognoza molniyevoy aktivnosti”, Optika atmosfery i okeana., 33:12 (2020), 949-957 (In Russian)

[30] Gorbatenko V. P., Pustovalov K. N., Konstantinova D. A., “Convective potential of the atmosphere of Western Siberia amid global climate change”, IOP Conference Series. Earth and Environmental Sciences, 611 (2020), 012001 | DOI

[31] Nechepurenko O. E., Gorbatenko V. P., Konstantinova D. A., Pustovalov K. N., “Linking the storm cells position and high values of instability indices – a case study in the southeast of Western Siberia”, Journal of Physics. Conference Series, 1604 (2020), 012006 | DOI

[32] Zhukova V. A., et al., “Spatial-temporal variability of temperature stratification of the lower atmosphere layer during the development of abnormally early thunderstorms and squalls”, Proc. SPIE, 11560 (2020), 115606U

[33] Kalinin N. A., et al., “Environments of formation of severe squalls and tornadoes causing large-scale windthrows in the forest zone of European Russia and the Ural”, Russian Meteorology and Hydrology, 46:2 (2021), 83-93 | DOI