Wave instability of a magnetic fluid surface at the boundary with water in an electric field
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A layer of close-packed particles of a dispersed phase (magnetite) with a protective shell of oleic acid is formed on the interface of a weakly conducting magnetic colloid (magnetic fluid) and water in a perpendicular electric field. The formation of a layer leads to a decrease in the interfacial tension. When the magnetic particles come into contact with the electrode surface, the electrochemical interaction of oleic acid molecules surrounding the particle with water occurs. As a result of the reaction, released ions charge the surface layer. After some time, the particles in the layer get recharged and repelled from the interface. This leads to wave instability. This paper considers the mathematical modeling of instability in the form of a boundary value problem – a dispersion equation. The determining factor in the development of wave instability is the action of the electric field, the formation of the near-electrode layer and, as a consequence, a decrease in the interfacial tension.
Keywords: magnetic hydrodynamic, wave instability, longwave approximation.
Mots-clés : dispersion equation
@article{VKAM_2021_37_4_a13,
     author = {V. S. Chekanov and N. V. Kandaurova and D. L. Vinokursky},
     title = {Wave instability of a magnetic fluid surface at the boundary with water in an electric field},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {141--149},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a13/}
}
TY  - JOUR
AU  - V. S. Chekanov
AU  - N. V. Kandaurova
AU  - D. L. Vinokursky
TI  - Wave instability of a magnetic fluid surface at the boundary with water in an electric field
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 141
EP  - 149
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a13/
LA  - ru
ID  - VKAM_2021_37_4_a13
ER  - 
%0 Journal Article
%A V. S. Chekanov
%A N. V. Kandaurova
%A D. L. Vinokursky
%T Wave instability of a magnetic fluid surface at the boundary with water in an electric field
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 141-149
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a13/
%G ru
%F VKAM_2021_37_4_a13
V. S. Chekanov; N. V. Kandaurova; D. L. Vinokursky. Wave instability of a magnetic fluid surface at the boundary with water in an electric field. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 141-149. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a13/

[1] Dikansky Y. I., Zakinyan A. R., Mkrtchyan L. S., “Instability of a thin layer of a magnetic fluid in a perpendicular magnetic field”, Technical Physics, 55:9 (2010), 1270-1274

[2] Korovin V. M., “Rosenzweig instability in a thin layer of a magnetic fluid”, Technical Physics, 58:12 (2013), 1721-1729

[3] Zybin S. V., Chekanov V. V., Chekanova N. V., “Instability of the flat surface of the magnetic fluid under the influence of ultrasound”, Magnetohydrodynamics, 1986, no. 1, 48-52

[4] Zaytsev V.M., Shliomis M.I., “Kharakter neustoychivosti poverkhnosti razdela dvukh zhidkostey v postoyannom pole”, Dokl. AN SSSR, 188:6 (1969), 1261–1262 (In Russian)

[5] Chekanov V. V., Kandaurova N. V., Chekanov V. S., “Experimental measurement of variations in the optical reflection coefficient of water-magnetic liquid interface in an electric field, wave motion, and surface instability”, Technical Physics, 59:9 (2014), 1286-1290

[6] Chekanov V.V., Kandaurova N.V., Chekanov V.S., “Interface of a horizontal layer of magnetic fluid with water in vertical electric and magnetic fields”, Magnetohydrodynamics, 52:3 (2016), 345–355 | DOI

[7] Zhakin A. I., “Electrohydrodynamics”, Physics-Uspekhi, 55:5 (2012), 465-488 | DOI

[8] Zhakin A.I., “Stability of a horizontal free surface of a weakly conducting fluid in a tangential alternating electric rield”, Magnetohydrodyn, 270:17 (1981), 345–355

[9] Chekanov V.V., Rakhmanina YU.A., Kandaurova N.V., Chekanov V.S., “Termodinamika obrazovaniya sloya nanochastits na mezhfaznoy granitse «gomogennaya zhidkost'-magnitnaya zhidkost'» v elektricheskom pole”, Vestnik SevKavGTU, 2012, no. 3, 16–22 (In Russian)

[10] Zhakin A. I., “Electrohydrodynamics of charged surfaces”, Physics-Uspekhi, 56:2 (2013), 141-163 | DOI

[11] Belonozhko D. F., Grigor'ev A. I., “Nonlinear Periodic Waves at the Charged Surface of an Electrically Conducting Viscous Liquid”, Technical Physics, 48:11 (2003), 1396-1406

[12] Aliyev I. N., Yurchenko S. O., Nazarova E. V., “On the problem of instability of the boundary of two media of finite thickness”, Journal of Engineering Physics and Thermophysics, 80:6 (2007), 1199-1205