@article{VKAM_2021_37_4_a11,
author = {P. S. Kozyr and R. N. Yakovlev},
title = {A model for estimating the value of the applied pressure based on the analysis of tactile sensor signals using machine learning methods},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {119--130},
year = {2021},
volume = {37},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a11/}
}
TY - JOUR AU - P. S. Kozyr AU - R. N. Yakovlev TI - A model for estimating the value of the applied pressure based on the analysis of tactile sensor signals using machine learning methods JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 119 EP - 130 VL - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a11/ LA - ru ID - VKAM_2021_37_4_a11 ER -
%0 Journal Article %A P. S. Kozyr %A R. N. Yakovlev %T A model for estimating the value of the applied pressure based on the analysis of tactile sensor signals using machine learning methods %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 119-130 %V 37 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a11/ %G ru %F VKAM_2021_37_4_a11
P. S. Kozyr; R. N. Yakovlev. A model for estimating the value of the applied pressure based on the analysis of tactile sensor signals using machine learning methods. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 119-130. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a11/
[1] Chi, C., Sun, X., Xue, N., Li, T., Liu, C., “Recent Progress in Technologies for Tactile Sensors”, Sensors, 18:4 (2018), 948 | DOI
[2] Park, M., Bok, B.-G., Ahn, J.-H., Kim, M.-S., “Recent Advances in Tactile Sensing Technology”, Micromachines, 9:7 (2018), 321 | DOI
[3] Zou, L., Ge, C., Wang, Z., Cretu, E., Li, X., “Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review”, Sensors, 17:11 (2017), 2653 | DOI
[4] Heng, W., Pang, G., Xu, F., Huang, X., Pang, Z., Yang, G., “Flexible Insole Sensors with Stably Connected Electrodes for Gait Phase Detection”, Sensors, 19:23 (2019), 5197 | DOI
[5] Krestovnikov K., Cherskikh E., Zimuld-inov E., “Combined Capacitive Pressure and Proximity Sensor for Using in Robotic Systems”, Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”, 2021, 513-522 | DOI
[6] Yerashov A. A., Krestovnikov K. D., Bykov A. N., “Razrabotka skhemotekhnicheskogo resheniya i konstruktsii yemkostnoy matritsy datchikov davleniya dlya primeneniya v robototekhnike”, Robototekhnika i tekhnicheskaya kibernetika, 4 (2020) (In Russian)
[7] Fragkiadakis, E., Dalakleidi, K. V., Ni-kita, K. S., “Design and Development of a Sitting Posture Recognition System”, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology So-ciety, 2019
[8] Roh, J., Park, H., Lee, K., Hyeong, J., Kim, S., Lee, B., “Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning”, Sensors, 18:2 (2018), 208 | DOI
[9] Lee, G., Park, J., Byun, J., Yang, J. C., Kwon, S. Y., Kim, C., Jang, C., Sim J.Y., Yook J. G., Park, S., “Parallel Signal Processing of a Wireless Pressure-Sensing Platform Combined with Machine-Learning-Based Cognition, Inspired by the Human Somatosensory System”, Advanced Materials, 2019, 1906269
[10] Matijevich E. S., Volgyesi P., Zelik K. E. A, “Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling”, Sensors, 21:2 (2021), 340 | DOI
[11] Jiang, Y., Deng, S., Sun, H., Qi, Y., “Unconstrained monitoring method for heartbeat signals measurement using pressure sensors array”, Sensors, 19:2 (2019), 368 | DOI
[12] Jung, M., Vishwanath, S. K., Kim, J., Ko, D.-K., Park, M.-J., Lim, S.-C., Jeon, S., “Transparent and Flexible Mayan-Pyramid-based Pressure Sensor using Facile-Transferred Indium tin Oxide for Bimodal Sensor Applications”, Scientific Reports, 9:1 (2019)
[13] Yao, H., Yang, W., Cheng, W., Tan, Y. J., See, H. H., Li, S., Ali H.P.A., Lim B. Z.H., Liu Z., Tee, B. C. K., “Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning”, Proceedings of the National Academy of Sci-ences, 117:41 (2020), 202010989
[14] Vesy DL-3102, Rezhim dostupa (In Russian) (data obrashcheniya – 20.03.2021) http://dl.demcom.ru/dl3102.html
[15] Bolstad W.M., Curran J.M., Introduction to Bayesian statistics, John Wiley Sons, 2016
[16] Smith C., Koning M., Decision Trees and Random Forests: A Visual Introduction for Beginners, Independently published, 2017
[17] Mirjalili S., Faris H., Aljarah I., Evolutionary Machine Learning Techniques, Springer, 2019
[18] Montgomery D., Peck E., Vining G., Introduction to Linear Regression Analysis, 2012
[19] Rokach L., Data Mining with Decision Trees, 2014
[20] Garson D., Partial Least Squares: Regression and Structural Equation Models, 2016
[21] Goodfellow I, Bengio Y, Courville A., Deep Learning, 2018