Bush optimization method for high ranked stream networks
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 104-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing high ranked large-scale stream networks is solved by using bush optimization technique. This technique implies connection of each network vertex with its fragment of a certain dimension. That allows reaching a higher ranked optimality for solving the problem in a given amount of time by a computer.
Keywords: terminal stream network, structure optimization, ranks of extrema, rank optimization method, bush optimization method, computer design, regional and interregional water supply network, dimensionality reduction problem.
@article{VKAM_2021_37_4_a10,
     author = {M. B. Abazokov and V. Ch. Kudaev},
     title = {Bush optimization method for high ranked stream networks},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {104--118},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a10/}
}
TY  - JOUR
AU  - M. B. Abazokov
AU  - V. Ch. Kudaev
TI  - Bush optimization method for high ranked stream networks
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 104
EP  - 118
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a10/
LA  - ru
ID  - VKAM_2021_37_4_a10
ER  - 
%0 Journal Article
%A M. B. Abazokov
%A V. Ch. Kudaev
%T Bush optimization method for high ranked stream networks
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 104-118
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a10/
%G ru
%F VKAM_2021_37_4_a10
M. B. Abazokov; V. Ch. Kudaev. Bush optimization method for high ranked stream networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 104-118. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a10/

[1] Tui Kh., “Vognutoe programmirovanie pri lineinykh ogranicheniyakh”, Dokl. AN SSSR, 159:1 (1964), 32–35 | Zbl

[2] Bulatov V. P., Kassinskaya L. I., “Nekotorye metody minimizatsii vognutoi funktsii na vypuklom mnogogrannike”, Metody optimizatsii i ikh prilozheniya. Irkutsk: SEI SO AN SSSR, 1987, 151–172

[3] Antsiferov E.G., Aschepkov L.T., Bulatov V.P., Metody optimizatsii i ikh prilozheniya. Ch. 1. Matematicheskoe programmirovanie, Nauka, Novosibirsk, 1990, 158 pp.

[4] Merenkov A. P., Sennova E. V., Sumarokov S. V. i dr., Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnabzheniya, Nauka, Novosibirsk, 1992, 407 pp.

[5] Trubin V.A., Svoistva i metody resheniya zadach optimalnogo sinteza setei, Ob-vo «Znanie» USSR, Kiev, 1982, 23 pp.

[6] Trubin V. A., Mikhalevich V. S., Shor N. Z., Optimizatsionnye zadachi proizvodstvenno – transportnogo planirovaniya, Nauka, Moskva, 1986, 260 pp.

[7] Kudaev V. Ch., “Rangi ekstremumov i strukturnaya optimizatsiya bolshikh setevykh sistem”, Izvestiya KBNTs RAN, 2016, no. 4(72), 15–24

[8] Kudaev V. Ch., Abazokov M. B., “Rangovaya optimizatsiya potokovykh setei”, Vestnik KRAUNTs. Fiz.-mat. nauki., 2018, no. 4(24), 178–185

[9] Kudaev V. Ch., Abazokov M. B., “Kompyuternoe proektirovanie potokovykh setei R-go ranga optimalnosti”, Izvestiya KBNTs RAN, 2019, no. 6(92), 122–131

[10] Vatel I. A., Kononenko A. F., “Ob odnoi chislennoi skheme resheniya zadachi optimalnogo upravleniya”, ZhVMiMF, 1970, no. 1 | Zbl

[11] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, Moskva, 1978, 432 pp. [Сhristofides N., Graph theory. An algorithmic approach, Academic press, London, 1975, 432 с. (In Russian)]