On a nonlocal boundary value problem for the equation fourth-order in partial derivatives
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 16-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study a nonlocal problem for a fourth-order equation in which the existence and uniqueness of a solution to this problem is proved. The solution is constructed explicitly in the form of a Fourier series; the absolute and uniform convergence of the obtained series and the possibility of term-by-term differentiation of the solution with respect to all variables are substantiated. A criterion for the unique solvability of the stated boundary value problem is established.
Keywords: boundary value problem, Fourier method, existence and uniqueness of the solution.
@article{VKAM_2021_37_4_a1,
     author = {O. Sh. Kilichov},
     title = {On a nonlocal boundary value problem for the equation fourth-order in partial derivatives},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {16--23},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/}
}
TY  - JOUR
AU  - O. Sh. Kilichov
TI  - On a nonlocal boundary value problem for the equation fourth-order in partial derivatives
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 16
EP  - 23
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/
LA  - ru
ID  - VKAM_2021_37_4_a1
ER  - 
%0 Journal Article
%A O. Sh. Kilichov
%T On a nonlocal boundary value problem for the equation fourth-order in partial derivatives
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 16-23
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/
%G ru
%F VKAM_2021_37_4_a1
O. Sh. Kilichov. On a nonlocal boundary value problem for the equation fourth-order in partial derivatives. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 16-23. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/

[1] Tixonov A. N., “O krayevix usloviyax, soderjashix proizvodniye poryadka previshayushiye poryadok uravneniya”, Mat. sbornik, 1950, 35-56 (In Russian) | Zbl

[2] Bitsadze A. V., “K zadache Neymana dlya garmonicheskix funksii”, Dokl. AN SSSR, 311:1 (1990), 11-13 (In Russian) | Zbl

[3] Bavrin I. I., “Operatory dlya garmonicheskikh funktsii i ikh prilozheniya”, Differentsial'nyye uravneniya, 21:1 (1985), 9-15 (In Russian) | Zbl

[4] Karachik V. V., Turmetov B. Kh., “Ob odnoy zadache dlya garmonicheskogo uravneniya”, Izvestiya AN Uz SSR, ser. Fiz.-mat. nauki, 4 (1990), 17-21 (In Russian) | Zbl

[5] Karachik V. V., “O razreshimosti krayevoy zadachi dlya uravneniya Gelmgolsa s normalnimi proizvodnimi visokogo poryadka na granise”, Differensialniye uravneniya, 28:5 (1992), 907-909 (In Russian) | Zbl

[6] Karachik V. V., “Ob odnoy zadache dlya uravneniya Puassona s normalnimi proizvodnimi visokogo poryadka na granise”, Differensialniye uravneniya, 32:3 (1996), 1501-1503 (In Russian)

[7] Karachik V. V., “Obobsheniya zadacha Neymana dlya garmonicheskix funksii v poluprostranstve”, Differensialniye uravneniya, 35:7 (1999), 1-6 (In Russian)

[8] Sokolovskiy V. B., “Ob odnom obobshenii zadacha Neymana”, Differensialniye uravneniya, 34:4 (1998), 714-716 (In Russian)

[9] Il'in V. A., “About solvability of initial-boundary problems for hyperbolic and parabolic equations”, Mat. Nauk, 15:2 (1960), 97-154 (In Russian)

[10] Amanov D., “On a generalization of the first initial-boundary value problem for the heat conduction equation”, Contemporary Analysis and Applied Mathematics, 2:1 (2014), 88-97 | Zbl

[11] Amanov D., Ibragimov G., Kilicman A., “On a Generalization of the Initial-Boundary Problem for the Vibrating String Equation”, Symmetry, 70:11(73) (2019), 2-10 DOI: 10.3390/sym11010073

[12] Amanov D., “Ob odnoy nelokalnoy zadache dlya uravneniya teploprovodnosti”, UzMJ, 2 (2016), 21-25 (In Russian)

[13] Amanov D., “On a generalization of the Dirichlet problem for the Poisson equation”, Boundary Value Problems, 2016, no. 2016:160, 170-182 . DOI: 10.1186/s13661-016-0668-6

[14] Kilichov O. Sh., “Krayevaya zadacha dlya uravneniya chetvertogo poryadka”, Byulleten' Instituta matematiki, 4:2 (2021), 61-69 (In Russian)

[15] Moiseyev Ye. I., “O reshenii spektral'nym metodom odnoy nelokal'noy krayevoy zadachi”, Differentsial'nyye uravneniya, 35:8 (1999), 1094-1100 (In Russian) | Zbl

[16] Il'in V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Nauka, M., 1973 (In Russian)

[17] Lyusternik L. A., Sobolev V. I., Elementy funktsional'nogo analiza, Nauka, M., 1965 (In Russian)