On a nonlocal boundary value problem for the equation fourth-order in partial derivatives
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 16-23
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we study a nonlocal problem for a fourth-order equation in which the existence and uniqueness of a solution to this problem is proved. The solution is constructed explicitly in the form of a Fourier series; the absolute and uniform convergence of the obtained series and the possibility of term-by-term differentiation of the solution with respect to all variables are substantiated. A criterion for the unique solvability of the stated boundary value problem is established.
Keywords:
boundary value problem, Fourier method, existence and uniqueness of the solution.
@article{VKAM_2021_37_4_a1,
author = {O. Sh. Kilichov},
title = {On a nonlocal boundary value problem for the equation fourth-order in partial derivatives},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {16--23},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/}
}
TY - JOUR AU - O. Sh. Kilichov TI - On a nonlocal boundary value problem for the equation fourth-order in partial derivatives JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 16 EP - 23 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/ LA - ru ID - VKAM_2021_37_4_a1 ER -
O. Sh. Kilichov. On a nonlocal boundary value problem for the equation fourth-order in partial derivatives. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 16-23. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a1/