Cauchy problem for a substantially loaded hyperbolic equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 10-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we study the Cauchy problem for a substantially loaded vibration equation of a one-dimensional string. Examples are given of characteristic manifolds for which the Cauchy problem is posed correctly, as well as non-characteristic manifolds for which the Cauchy problem is posed incorrectly.
Keywords: Cauchy problem, essentially loaded equation, characteristic manifold, regular solution, difference equation, initial data.
Mots-clés : domain of wave propagation
@article{VKAM_2021_37_4_a0,
     author = {A. Kh. Attaev},
     title = {Cauchy problem for a substantially loaded hyperbolic equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {10--15},
     year = {2021},
     volume = {37},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a0/}
}
TY  - JOUR
AU  - A. Kh. Attaev
TI  - Cauchy problem for a substantially loaded hyperbolic equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 10
EP  - 15
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a0/
LA  - ru
ID  - VKAM_2021_37_4_a0
ER  - 
%0 Journal Article
%A A. Kh. Attaev
%T Cauchy problem for a substantially loaded hyperbolic equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 10-15
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a0/
%G ru
%F VKAM_2021_37_4_a0
A. Kh. Attaev. Cauchy problem for a substantially loaded hyperbolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 37 (2021) no. 4, pp. 10-15. http://geodesic.mathdoc.fr/item/VKAM_2021_37_4_a0/

[1] Knezer A., “Rendiconti del Circolo Matematico”, di Palezno, 37 (1914), 169–197

[2] Gyunter N. M., “K teorii integralov Stilt'yessa-Rodina i integral'nykh uravneniy”, Dokl. AN SSSR, 21 (1938), 219–223 (In Russian)

[3] Targ S. M., Osnovnyye zadachi teorii laminarnykh techeniy, Gostekhizdat, M.-L., 1951, 420 pp. (In Russian)

[4] Kochina N. N., “Ob izmeneniyakh urovnya gruntovykh vod pri posevakh”, PMTF, 1971, no. 4, 87–94 (In Russian)

[5] Phillips R. S., “Dissipative operators and hyporbolic systems of partial differential equations”, Trans. Amer. Math. Soc., 1959, no. 90, 193–254 | DOI | Zbl

[6] Krall A. M., “Differential - boundary operators”, Trans. Amer. Math. Soc., 154 (1971) | DOI | Zbl

[7] Nakhushev A. M., “O zadache Darbu dlya odnogo vyrozhdayushchegosya nagruzhennogo integro - differentsial'nogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 (In Russian) | Zbl

[8] Nakhushev A. M., Nagruzhennyye uravneniya i ikh primeneniye, Nauka, M., 2012, 232 pp. (In Russian)

[9] Borok V. M., Zhitomirskiy YA. I., “Zadacha Koshi dlya lineynykh nagruzhennykh differentsial'nykh uravneniy. I. Yedinstvennost'.”, Izv. vuzov. Matem., 1981, no. 9, 5–12 (In Russian) | Zbl

[10] Borok V. M., Zhitomirskiy YA. I., “Zadacha Koshi dlya lineynykh nagruzhennykh differentsial'nykh uravneniy. II. Korrektnost'”, Izv. vuzov. Matem., 1981, no. 10, 5–11 (In Russian)

[11] Dzhenaliyev M. T., Romazanov M. I., Nagruzhennyye uravneniya kak vozmushcheniye differentsial'nykh uravneniy, Amaty, 2010, 336 pp. (In Russian)