Mots-clés : optimal interpolation formulas
@article{VKAM_2021_36_3_a9,
author = {A. K. Boltaev and Kh. M. Shadimetov and F. A. Nuraliev},
title = {The extremal function of interpolation formulas in $W_2^{(2,0)}$ space},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {123--132},
year = {2021},
volume = {36},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/}
}
TY - JOUR
AU - A. K. Boltaev
AU - Kh. M. Shadimetov
AU - F. A. Nuraliev
TI - The extremal function of interpolation formulas in $W_2^{(2,0)}$ space
JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY - 2021
SP - 123
EP - 132
VL - 36
IS - 3
UR - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/
LA - en
ID - VKAM_2021_36_3_a9
ER -
%0 Journal Article
%A A. K. Boltaev
%A Kh. M. Shadimetov
%A F. A. Nuraliev
%T The extremal function of interpolation formulas in $W_2^{(2,0)}$ space
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 123-132
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/
%G en
%F VKAM_2021_36_3_a9
A. K. Boltaev; Kh. M. Shadimetov; F. A. Nuraliev. The extremal function of interpolation formulas in $W_2^{(2,0)}$ space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 123-132. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/
[1] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Mathematics in Science and Engineering, Academic Press, New York, 1967
[2] Babaev S. S., Hayotov A. R., “Optimal interpolation formulas in the space $W_2^{(m,m-1)}$”, Calcolo, 56:23 (2019)
[3] Blaga P., Coman Gh., “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44
[4] Cabada A. A., Hayotov A. R., Shadimetov Kh. M., “Construction of $D^m$-splines in $L_{2}^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551
[5] Catinaş T., Coman Gh., “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64
[6] Coman Gh., “Quadrature formulas of Sard type (Romanian)”, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 17:2 (1972), 73–77
[7] Coman Gh., “Monosplines and optimal quadrature formulae in $L\sb{p}$”, Rend. Mat., 6:5 (1972), 567–577
[8] Mamatova N. Kh., Hayotov A. R., Shadimetov Kh. M., “Construction of optimal grid interpolation formulas in sobolev space $\widetilde{L_{2}^{m}}(H)$ of periodic function of $n$ variables by Sobolev method”, Ufa Mathematical Journal, 5:1 (2013), 90-101
[9] Schoenberg I. J., “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170
[10] Schoenberg I. J., “On monosplines of least square deviation and best quadrature formulae II”, SIAM J. Numer. Anal., 3:2 (1966), 321–328
[11] Schumaker L. L., Spline functions: basic theory, Cambridge university press, 2007, 600 pp.
[12] Shadimetov Kh. M., Hayotov A. R., “Construction of interpolation splines minimizing semi-norm in $W_2^{(m,m-1)}(0,1)$ space”, Bit Numerical Mathematics, 53 (2013), 545-563
[13] Shadimetov Kh. M., Hayotov A. R., “Construction of lattice optimal interpolation formulas in the Sobolev space $\widetilde{L_{2}^{m}}(H)$ of $n$-variable periodic functions”, Uzbek Mathematical Journal, 2011, no. 1, 186-193
[14] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243
[15] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Construction of optimal interpolation formulas in the Sobolev space”, Contemporary Mathematics. Fundamental Directions, 64:4 (2018), 723-735
[16] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Optimal interpolation formulas with derivative in the space $L_2^{(m)} (0,1)$”, Filomat, 33:17 (2019), 5661-5675
[17] Sobolev S. L., “Interpolation of functions of $n$ variables”, Dokl. USSR Academy of Sciences, 1961. (in Russian)
[18] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, 1974 (in Russian)
[19] Sobolev S. L., “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566
[20] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997
[21] Vasilenko V. A., Spline functions: theory, algorithms, programs, Novosibirsk, 1983, 216 pp. (in Russian)
[22] Vladimirov V. S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1983 (In Russian)