The extremal function of interpolation formulas in $W_2^{(2,0)}$ space
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 123-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal interpolation formula in a Hilbert space. Here, using the Sobolev method, the first part of the problem is solved, i.e., an explicit expression of the square of the norm of the error functional of the optimal interpolation formulas in the Hilbert space $W_2^{(2,0)}$ is found.
Keywords: the error functional, the extremal function, Hilbert space.
Mots-clés : optimal interpolation formulas
@article{VKAM_2021_36_3_a9,
     author = {A. K. Boltaev and Kh. M. Shadimetov and F. A. Nuraliev},
     title = {The extremal function of interpolation formulas in $W_2^{(2,0)}$ space},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {123--132},
     year = {2021},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/}
}
TY  - JOUR
AU  - A. K. Boltaev
AU  - Kh. M. Shadimetov
AU  - F. A. Nuraliev
TI  - The extremal function of interpolation formulas in $W_2^{(2,0)}$ space
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 123
EP  - 132
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/
LA  - en
ID  - VKAM_2021_36_3_a9
ER  - 
%0 Journal Article
%A A. K. Boltaev
%A Kh. M. Shadimetov
%A F. A. Nuraliev
%T The extremal function of interpolation formulas in $W_2^{(2,0)}$ space
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 123-132
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/
%G en
%F VKAM_2021_36_3_a9
A. K. Boltaev; Kh. M. Shadimetov; F. A. Nuraliev. The extremal function of interpolation formulas in $W_2^{(2,0)}$ space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 123-132. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a9/

[1] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Mathematics in Science and Engineering, Academic Press, New York, 1967

[2] Babaev S. S., Hayotov A. R., “Optimal interpolation formulas in the space $W_2^{(m,m-1)}$”, Calcolo, 56:23 (2019)

[3] Blaga P., Coman Gh., “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44

[4] Cabada A. A., Hayotov A. R., Shadimetov Kh. M., “Construction of $D^m$-splines in $L_{2}^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551

[5] Catinaş T., Coman Gh., “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64

[6] Coman Gh., “Quadrature formulas of Sard type (Romanian)”, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 17:2 (1972), 73–77

[7] Coman Gh., “Monosplines and optimal quadrature formulae in $L\sb{p}$”, Rend. Mat., 6:5 (1972), 567–577

[8] Mamatova N. Kh., Hayotov A. R., Shadimetov Kh. M., “Construction of optimal grid interpolation formulas in sobolev space $\widetilde{L_{2}^{m}}(H)$ of periodic function of $n$ variables by Sobolev method”, Ufa Mathematical Journal, 5:1 (2013), 90-101

[9] Schoenberg I. J., “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170

[10] Schoenberg I. J., “On monosplines of least square deviation and best quadrature formulae II”, SIAM J. Numer. Anal., 3:2 (1966), 321–328

[11] Schumaker L. L., Spline functions: basic theory, Cambridge university press, 2007, 600 pp.

[12] Shadimetov Kh. M., Hayotov A. R., “Construction of interpolation splines minimizing semi-norm in $W_2^{(m,m-1)}(0,1)$ space”, Bit Numerical Mathematics, 53 (2013), 545-563

[13] Shadimetov Kh. M., Hayotov A. R., “Construction of lattice optimal interpolation formulas in the Sobolev space $\widetilde{L_{2}^{m}}(H)$ of $n$-variable periodic functions”, Uzbek Mathematical Journal, 2011, no. 1, 186-193

[14] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243

[15] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Construction of optimal interpolation formulas in the Sobolev space”, Contemporary Mathematics. Fundamental Directions, 64:4 (2018), 723-735

[16] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Optimal interpolation formulas with derivative in the space $L_2^{(m)} (0,1)$”, Filomat, 33:17 (2019), 5661-5675

[17] Sobolev S. L., “Interpolation of functions of $n$ variables”, Dokl. USSR Academy of Sciences, 1961. (in Russian)

[18] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, 1974 (in Russian)

[19] Sobolev S. L., “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566

[20] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997

[21] Vasilenko V. A., Spline functions: theory, algorithms, programs, Novosibirsk, 1983, 216 pp. (in Russian)

[22] Vladimirov V. S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1983 (In Russian)