@article{VKAM_2021_36_3_a8,
author = {A. N. Elmurodov},
title = {Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {110--122},
year = {2021},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/}
}
TY - JOUR AU - A. N. Elmurodov TI - Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 110 EP - 122 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/ LA - ru ID - VKAM_2021_36_3_a8 ER -
%0 Journal Article %A A. N. Elmurodov %T Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 110-122 %V 36 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/ %G ru %F VKAM_2021_36_3_a8
A. N. Elmurodov. Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 110-122. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/
[1] Cantrell R. S., Cosner C., Spatial Ecology via Reaction-diffusion Equations, Chichester, UK, John Wiley and Sons Ltd., 2003, 729 pp. | Zbl
[2] Du Y., Z.Lin, “Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary”, SIAM J. Math. Anal., 2010, no. 42, 377–405 | Zbl
[3] Wang R.-H., Wang L., Wang Z.-Ch., “Free boundary problem of a reaction-diffusion equation with nonlinear convection term”, J. Math. Anal. Appl., 103:467 (2018), 1233–1257 | DOI
[4] Du Y., Ma. L., “Logistic type equations on by a squeezing method involving boundary blow-up solutions”, J. London Math. Soc., 64:2 (2001), 107–124 | Zbl
[5] Friedman A., “The Stefan problem in several space variables”, Trans. Amer. Math. Soc., 133:9 (1968), 51–87 | DOI | Zbl
[6] Friedman A., “Free boundary problems in biology”, Discrete Contin. Dyn. Syst., 32:9 (2015), 3081–3097 | DOI
[7] Kamenomostskaja S. L., “On Stefan's problem”, Mat. Sb., 53:2 (1961), 489–514
[8] Meyrmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986, 240 pp. (In Russian)
[9] Ladyzenskaya O. A., Solonnikov V. A., Uraceva N. N., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., Transl. Math. Momogr., 1968, 760 pp.
[10] Lei C. X., Kim K., Lin Z. G., “The spreading frontiers of avian-human influenza described by the free boundary”, Sci. China Math., 57:2 (2014), 971-990 | DOI | Zbl
[11] Rubinshteyn L. I., Problema Stefana, Zvaygzne, Riga, 1967, 456 pp. (In Russian)
[12] Mimura M., Yamada Y., Yotsutani S., “A free boundary problem in ecology”, Japan J.Appl. Math., 1985, no. 2, 151-186 | DOI | Zbl
[13] Mimura M., Yamada Y., Yotsutani S., “Free boundary problems for some reaction-diffusion equations”, Hiroshima Math. J., 1987, no. 17, 241-280. | Zbl
[14] Okubo A., Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, 1980 | Zbl
[15] Pao C. V., Nonlinear Parabolic and Elliptic Equations, New York, Plenum Press, 1992, 778 pp. | Zbl
[16] Fridman A., Uravneniya v chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 428 pp. (In Russian)
[17] Kruzhkov S. N., “Nelineynyye parabolicheskiye uravneniya s dvumya nezavisimymi peremennymi”, Tr. MMO, 16:2 (1967), 329–346 | Zbl
[18] Takhirov ZH. O., Neklassicheskiye nelineynyye zadachi i zadachi so svobodnoy granitsey, Tashkent, 2014, 240 pp. (In Russian)
[19] Takhirov J. O., “A free boundary problem for a reaction-diffusion equation appearing in biology”, Indian J. Pure Appl. Math., 50:1 (2019), 95–112 | DOI | Zbl
[20] Takhirov J. O., Rasulov M. S., “Problem with Free Boundary for Systems of Equations of Reaction-Diffusion Type”, Ukrainian Math. J., 69:13 (2018), 1968–1980 | DOI | Zbl