Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 110-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is concerned with a free boundary problem for semilinear parabolic equations, wbich describes the habitat segregation phenomenon in population ecology. The main goal is to show global existence, the uniqueness of solutions to the problem. A two-phase mathematical model with free boundaries for parabolic equations of the reaction-diffusion type is proposed. A priori estimates of Schauder type are established, on the basis of which the unique solvability of the problem is proved. The instability of each solution is fully determined using the comparison theorem.
Keywords: mathematical model, a priori estimate, comparison theorems, uniquely solvability.
@article{VKAM_2021_36_3_a8,
     author = {A. N. Elmurodov},
     title = {Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {110--122},
     year = {2021},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/}
}
TY  - JOUR
AU  - A. N. Elmurodov
TI  - Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 110
EP  - 122
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/
LA  - ru
ID  - VKAM_2021_36_3_a8
ER  - 
%0 Journal Article
%A A. N. Elmurodov
%T Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 110-122
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/
%G ru
%F VKAM_2021_36_3_a8
A. N. Elmurodov. Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 110-122. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a8/

[1] Cantrell R. S., Cosner C., Spatial Ecology via Reaction-diffusion Equations, Chichester, UK, John Wiley and Sons Ltd., 2003, 729 pp. | Zbl

[2] Du Y., Z.Lin, “Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary”, SIAM J. Math. Anal., 2010, no. 42, 377–405 | Zbl

[3] Wang R.-H., Wang L., Wang Z.-Ch., “Free boundary problem of a reaction-diffusion equation with nonlinear convection term”, J. Math. Anal. Appl., 103:467 (2018), 1233–1257 | DOI

[4] Du Y., Ma. L., “Logistic type equations on by a squeezing method involving boundary blow-up solutions”, J. London Math. Soc., 64:2 (2001), 107–124 | Zbl

[5] Friedman A., “The Stefan problem in several space variables”, Trans. Amer. Math. Soc., 133:9 (1968), 51–87 | DOI | Zbl

[6] Friedman A., “Free boundary problems in biology”, Discrete Contin. Dyn. Syst., 32:9 (2015), 3081–3097 | DOI

[7] Kamenomostskaja S. L., “On Stefan's problem”, Mat. Sb., 53:2 (1961), 489–514

[8] Meyrmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986, 240 pp. (In Russian)

[9] Ladyzenskaya O. A., Solonnikov V. A., Uraceva N. N., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., Transl. Math. Momogr., 1968, 760 pp.

[10] Lei C. X., Kim K., Lin Z. G., “The spreading frontiers of avian-human influenza described by the free boundary”, Sci. China Math., 57:2 (2014), 971-990 | DOI | Zbl

[11] Rubinshteyn L. I., Problema Stefana, Zvaygzne, Riga, 1967, 456 pp. (In Russian)

[12] Mimura M., Yamada Y., Yotsutani S., “A free boundary problem in ecology”, Japan J.Appl. Math., 1985, no. 2, 151-186 | DOI | Zbl

[13] Mimura M., Yamada Y., Yotsutani S., “Free boundary problems for some reaction-diffusion equations”, Hiroshima Math. J., 1987, no. 17, 241-280. | Zbl

[14] Okubo A., Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, 1980 | Zbl

[15] Pao C. V., Nonlinear Parabolic and Elliptic Equations, New York, Plenum Press, 1992, 778 pp. | Zbl

[16] Fridman A., Uravneniya v chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 428 pp. (In Russian)

[17] Kruzhkov S. N., “Nelineynyye parabolicheskiye uravneniya s dvumya nezavisimymi peremennymi”, Tr. MMO, 16:2 (1967), 329–346 | Zbl

[18] Takhirov ZH. O., Neklassicheskiye nelineynyye zadachi i zadachi so svobodnoy granitsey, Tashkent, 2014, 240 pp. (In Russian)

[19] Takhirov J. O., “A free boundary problem for a reaction-diffusion equation appearing in biology”, Indian J. Pure Appl. Math., 50:1 (2019), 95–112 | DOI | Zbl

[20] Takhirov J. O., Rasulov M. S., “Problem with Free Boundary for Systems of Equations of Reaction-Diffusion Type”, Ukrainian Math. J., 69:13 (2018), 1968–1980 | DOI | Zbl