Development of mathematical models for calculating parameters during transportation of a steam-water mixture
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 94-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the practice of developing geothermal fields, there is a need to find the dependence between the flow parameters. When transporting a steam-water mixture, it is necessary to determine the conditions that ensure the stability in the pipeline. At domestic geothermal energy, the hydraulic calculation of steam-water mixture pipelines was carried out using the computer program MODEL created by the authors of this work. New challenges and the emergence of the theory of stability led to the creation of a mathematical model SWIP (Stream-Water Inclining Pipeline). This article presents the stages of creating a new model by the authors that meets modern requirements.
Keywords: hydraulic calculation of steam-water mixture, geothermal fields, pipeline, mathematical models.
@article{VKAM_2021_36_3_a7,
     author = {A. A. Chermoshentseva and A. N. Shulyupin},
     title = {Development of mathematical models for calculating parameters during transportation of a steam-water mixture},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {94--109},
     year = {2021},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a7/}
}
TY  - JOUR
AU  - A. A. Chermoshentseva
AU  - A. N. Shulyupin
TI  - Development of mathematical models for calculating parameters during transportation of a steam-water mixture
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 94
EP  - 109
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a7/
LA  - ru
ID  - VKAM_2021_36_3_a7
ER  - 
%0 Journal Article
%A A. A. Chermoshentseva
%A A. N. Shulyupin
%T Development of mathematical models for calculating parameters during transportation of a steam-water mixture
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 94-109
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a7/
%G ru
%F VKAM_2021_36_3_a7
A. A. Chermoshentseva; A. N. Shulyupin. Development of mathematical models for calculating parameters during transportation of a steam-water mixture. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 94-109. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a7/

[1] Grigor'eva V. A., Zorina V. M., Teoreticheskie osnovy teplotehniki. Teplotehnicheskiy eksperiment, Spravochnik, Energoatomizdat, M., 1988, 560 pp. (In Russian)

[2] Shulyupin A. N., Voprosy gidravliki parovodyanoy smesi pri osvoenii geotermal'nyh mestorozhdeny, Dal'nauka, Vladivostok, 2011, 262 pp. (In Russian)

[3] Shulyupin A. N., Ustojchivost' rezhima raboty parovodyanoy skvazhiny, OOO ”Amur-print”, Khabarovsk, 2018, 136 pp. (In Russian)

[4] Shulyupin A.N., Chermoshentseva A.A., Varlamova N.N., “Numerical study of the stability of the steam-water flow in pipelines of geothermal gathering system”, CEUR Workshop Proceedings (Information Technologies and High-Performance Computing), 2426 (2019), 103–109

[5] Kong R., Qiao S., Kim S., Bajorek S., Tien K., Hoxie C., “Interfacial area transport models for horizontal air-water bubbly flow in different pipe sizes”, International Journal of Multiphase Flow, 106 (2018), 46–59 | DOI

[6] Pashkevich R.I., Muratov P.V., “Film condensation in a large diameter tube with upward steam flow”, International Journal of Heat and Mass Transfer, 81 (2015), 804–810 | DOI

[7] Shulyupin A. N., Chermoshentseva A. A., Varlamova N. N., “Vliyanie geometrii trassy truboprovoda na ustoychivost' parovodyanogo techeniya pri ekspluatacii GeoES”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 32:3 (2020), 143–153 (In Russian) | Zbl

[8] Shulyupin A.N., “Flow in a geothermal well: model and experiment”, Volcanology Seismology, 1992, no. 4, 426–434

[9] Rizaldy, Zarrouk S.J., “Pressure drop in large diameter geothermal two-phase pipelines”, Proceedings 38-th New Zealand Geothermal Workshop, 2016, 1–5

[10] Woldesemayat M.A., Ghajar A.J., “Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes”, International Journal of Multiphase Flow, 33 (2007), 347–370 | DOI

[11] Bhagwat S.M., Ghajar A.J., “Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow”, Experimental Thermal and Fluid Science, 39 (2012), 213–227. | DOI

[12] Xu Y., Fang X., “Correlations of void fraction for two-phase refrigerant flow in pipes”, Applied Thermal Engineering, 64 (2014), 242–251 | DOI

[13] Bhagwat S.M., Ghajar A.J., “A flow pattern independent drift flux model based void fraction correlation for a wide range of gas–liquid two phase flow”, International Journal of Multiphase Flow, 59. (2014), 186–205. | DOI

[14] Dang Z., Yang Z., Yang X., Ishii M., “Experimental study on void fraction, pressure drop and flow regime analysis in a large ID piping system”, International Journal of Heat and Mass Transfer, 111 (2019), 31–41

[15] Baghernejad Y., Hajidavalloo E., Zadeh S.M.H., Behbahani-Nejad M., “Effect of pipe rotation on flow pattern and pressure drop of horizontal two-phase flow”, International Journal of Multiphase Flow, 111 (2019), 101–111 | DOI

[16] Droznin V. A., Fizicheskaya model' vulkanicheskogo processa, Nauka, M., 1980, 92 pp. (In Russian)

[17] Shulyupin A.N., “Hydraulic calculations for the transport of a steam-water heat carrier at hydrothermal fields”, Volcanology Seismology, 7:3 (2013), 196–203