Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed boundary value problem is solved for an ordinary differential equation containing a composition of left- and right-sided Riemann-Liouville and Caputo fractional differentiation operators. The problem is equivalently reduced to a Fredholm integral equation of the second kind, for which a sufficient condition for unique solvability is found. As a consequence, the Lyapunov inequality is proved for the problem under study.
Keywords: fractional differential equation with different origins, mixed boundary value problem, Riemann-Liouville derivative, Caputo derivative.
@article{VKAM_2021_36_3_a4,
     author = {L.M. Eneeva},
     title = {Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/}
}
TY  - JOUR
AU  - L.M. Eneeva
TI  - Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 65
EP  - 71
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/
LA  - ru
ID  - VKAM_2021_36_3_a4
ER  - 
%0 Journal Article
%A L.M. Eneeva
%T Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 65-71
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/
%G ru
%F VKAM_2021_36_3_a4
L.M. Eneeva. Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/