Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71
Voir la notice de l'article provenant de la source Math-Net.Ru
A mixed boundary value problem is solved for an ordinary differential equation containing a composition of left- and right-sided Riemann-Liouville and Caputo fractional differentiation operators. The problem is equivalently reduced to a Fredholm integral equation of the second kind, for which a sufficient condition for unique solvability is found. As a consequence, the Lyapunov inequality is proved for the problem under study.
Keywords:
fractional differential equation with different origins, mixed boundary value problem, Riemann-Liouville derivative, Caputo derivative.
@article{VKAM_2021_36_3_a4,
author = {L.M. Eneeva},
title = {Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {65--71},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/}
}
TY - JOUR AU - L.M. Eneeva TI - Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 65 EP - 71 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/ LA - ru ID - VKAM_2021_36_3_a4 ER -
%0 Journal Article %A L.M. Eneeva %T Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 65-71 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/ %G ru %F VKAM_2021_36_3_a4
L.M. Eneeva. Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/