Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed boundary value problem is solved for an ordinary differential equation containing a composition of left- and right-sided Riemann-Liouville and Caputo fractional differentiation operators. The problem is equivalently reduced to a Fredholm integral equation of the second kind, for which a sufficient condition for unique solvability is found. As a consequence, the Lyapunov inequality is proved for the problem under study.
Keywords: fractional differential equation with different origins, mixed boundary value problem, Riemann-Liouville derivative, Caputo derivative.
@article{VKAM_2021_36_3_a4,
     author = {L.M. Eneeva},
     title = {Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {65--71},
     year = {2021},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/}
}
TY  - JOUR
AU  - L.M. Eneeva
TI  - Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 65
EP  - 71
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/
LA  - ru
ID  - VKAM_2021_36_3_a4
ER  - 
%0 Journal Article
%A L.M. Eneeva
%T Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 65-71
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/
%G ru
%F VKAM_2021_36_3_a4
L.M. Eneeva. Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 65-71. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a4/

[1] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, M., 2003, 272 pp. (In Russian)

[2] Rekhviashvili S. SH., “Formalizm Lagranzha s drobnoy proizvodnoy v zadachakh mekhaniki”, Pis'ma v ZHTF, 30:2 (2004), 33–37 (In Russian)

[3] Rekhviashvili S. SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differentsirovaniya”, Nelineynyy mir, 5:4 (2007), 194–197 (In Russian)

[4] Eneeva L. M., “Krayevaya zadacha dlya differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vest. KRAUNTS. Fiz.-mat. nauki, 3:2(11) (2015), 39–44 (In Russian)

[5] Eneeva L. M., “Otsenka pervogo sobstvennogo znacheniya zadachi Dirikhle dlya obyknovennogo differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNTS RAN, 2017, no. 1(75), 34–40 (In Russian)

[6] Eneeva L. M., “O zadache Neymana dlya uravneniya s drobnymi proizvodnymi s razlichnymi nachalami”, Vest. KRAUNTS. Fiz.-mat. nauki., 2017, no. 1(75), 34–40 (In Russian) | DOI

[7] Eneeva L. M., “Neravenstvo Lyapunova dlya uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vest. KRAUNTS. Fiz.-mat. nauki, 2019, no. 3(28), 32–40 (In Russian) | DOI

[8] Eneeva L. M., Pskhu A. V., Potapov A. A., Feng T., Rekhviashvili S. Sh., “Lyapunov inequality for a fractional differential equation modelling damped vibrations of thin film MEMS”, Advances in Intelligent Systems and Computing. ICCD2019, E19100

[9] Rekhviashvili S. Sh., Pskhu A. V., Potapov A. A., Feng T., Eneeva L. M., “Modeling damped vibrations of thin film MEMS”, Advances in Intelligent Systems and Computing. ICCD2019, E19101

[10] Lyapunov A. M., “Ob odnom voprose, kasayushchemsya lineynykh differentsial'nykh uravneniy vtorogo poryadka s periodicheskimi koeffitsientami”, Soob. Khar'kov. matem. obshch. Vtoraya ser., 5 (1897), 190–254 (In Russian) | Zbl

[11] Brown R. C., Hinton D. B., Lyapunov Inequalities and their Applications, Survey on Classical Inequalities. Mathematics and Its Applications., Springer, Dordrecht, 2000, 517 pp.

[12] Ferreira R.A.C., “A Lyapunov-type inequality for a fractional boundary value problem”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | Zbl

[13] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série, 80(94) (2006), 259–272 | Zbl

[14] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | Zbl

[15] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI | Zbl

[16] Tokmagambetov N., Torebek B. T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 | Zbl

[17] Eneeva L., Pskhu A., Rekhviashvili S., “Ordinary Differential Equation with Left and Right Fractional Derivatives and Modeling of Oscillatory Systems”, Mathematics, 8(12) (2020), 2122

[18] Rekhviashvili S. Sh., Pskhu A. V., Agarwal P., Jain Sh., “Application of the fractional oscillator model to describe damped vibrations”, Turkish Journal of Physics, 43 (2019), 236–242 | DOI

[19] Rekhviashvili S. Sh., Pskhu A. V., “New Method for Describing Damped Vibrations of a Beam with a Built-in End”, Technical Physics, 64 (2019), 1237–1241 | DOI