Integral operators, embedding theorems, Taylor coefficients, isometries, boundary behaviour of area-Nevanlinna type spaces in higher dimension and related problems
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 40-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains an overview of recent results of Area-Nevanlinna classes in higher dimension. We here consider various aspects of this new interesting research area of analytic function theory in higher dimension (integral operations, embedding theorems, Taylor coefficients). Previously in one dimension all these results were known. New open interesting Problems in this new research area will be also discussed and indicated.
Keywords: polydisk, unit ball, integral operators, analytic functions, analytic spaces, area Nevanlinna type spaces, tubular domain, isometries, boundary behaviour.
Mots-clés : Taylor coefficients, pseudoconvex domain
@article{VKAM_2021_36_3_a3,
     author = {R. F. Shamoyan},
     title = {Integral operators, embedding theorems, {Taylor} coefficients, isometries, boundary behaviour of {area-Nevanlinna} type spaces in higher dimension and related problems},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {40--64},
     year = {2021},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a3/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - Integral operators, embedding theorems, Taylor coefficients, isometries, boundary behaviour of area-Nevanlinna type spaces in higher dimension and related problems
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 40
EP  - 64
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a3/
LA  - en
ID  - VKAM_2021_36_3_a3
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T Integral operators, embedding theorems, Taylor coefficients, isometries, boundary behaviour of area-Nevanlinna type spaces in higher dimension and related problems
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 40-64
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a3/
%G en
%F VKAM_2021_36_3_a3
R. F. Shamoyan. Integral operators, embedding theorems, Taylor coefficients, isometries, boundary behaviour of area-Nevanlinna type spaces in higher dimension and related problems. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 40-64. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a3/

[1] Shamoyan R., Maksakov S., “Area Nevanlinna type classes of analytic functions in the unit disk and related spaces”, Comm. Math., 26 (2018), 47-76 | DOI | Zbl

[2] Henkin G., “Solutions with estimates of the H. Lewy and Poincare-Lelong equations. The construction of function of a Nevanlinna class with given zeros in a strictly pseudoconvex domain”, Dokl. Akad. Nauk. U.S.S.R., 224 (1975), 771-774 | Zbl

[3] Skoda H., “Valeurs au bord pour les solutions de loperateurd et caracterisation des zeros des fonctions de la classe de Nevanlinna”, Bull. Soc. Math. France, 104 (1976), 225-299 | DOI | Zbl

[4] Shvedenko S. V., “Hardy classes and related spaces of analytic functions in the unit disc, polydisc and ball”, Itogi Nauki i Tekhn. Ser. Mat. Anal., 23 (1985), 3–124 | Zbl

[5] Rudin W., Function theory in the polydisk, Benjamin, New York, 1969

[6] Rudin W., Function theory in the unit ball, Springer-Verlag, New York, 1980 | Zbl

[7] Shamoyan F., Shubabko. E., An introduction to the theory of weighted $L^p$-classes of meromorphic functions, Group of Companies «Desyatochka», Bryansk, 2009

[8] Mestrovic R., Pavicevic Z., Privalov spaces in the unit disk, Research monograph, University of Montenegro, Podgorica, 2009

[9] Mestrovic R., Pavicevic Z., “A short survey of the ideal structure of Privalov spaces in the unit disk”, Mat., Montisnigri, XXXII (2015), 14-22 | Zbl

[10] Shubabko E., Factorization and Representations for Classes of Meromorphic Functions with Restrictions on the Nevanlinna Characteristic, Dissertation, Rostov-na-Donu (in Russian), 2002

[11] Shamoyan R., Li H., “On the action of differentiation operator in some classes of Nevanlinna-Djrbashian type in polydisk”, Armenian Journal of Mathematics, 2:4 (2009), 120-134 | Zbl

[12] Shamoyan R., Li H., “On the action of differentiation operator in some classes of Nevanlinna-Djrbashian type in polydisk”, Bullet. Acad. Sci. Moldova. Matematica, 62:1 (2010), 100–105 | Zbl

[13] Shamoyan R., “On multipliers from spaces of Bergman type to Hardy spaces in polydisk”, Ukrainian Math. Journal, 52:10 (2000), 1606-1617 | DOI | Zbl

[14] Kurilenko S., Shamoyan R., “Some remarks on distances in spaces of analytic functions in bounded domains with $C^n$ boundary and admissible domains”, Chebyshevsckii sbornik, 15:3 (2014), 114-130 | Zbl

[15] Rodikova E. G., “On coefficient multipliers of weighted space of analytic functions”, Vesnik BGU, 2012, no. 4, 61-69

[16] Subbotin A., Mestrovic R., “Multipliers and linear functionals of Privalov spaces of analytic functions in the unit disk”, Dokl. RAN, 365:4 (1999), 452-454 | Zbl

[17] Shamoyan F., Rodikova E., “$L^p$ estimates in classes of analytic functions with restrictions on Nevanlinna characteristic”, Vesnik BGU (in Russian), 2012, no. 4

[18] Shamoyan F. A., Kursina I. N., “On the invariance of some classes of holomorphic functions under integral and differential operators, Investigations on linear operators and function theory”, Zap. Nauchn. Sem. POMI, 255 (1998), 184–197 | Zbl

[19] Shamoyan R., Mihic O., “On zero sets and embeddings of some new analytic function spaces in the unit disk”, Kragujevac Math. Jour., 38:2 (2014), 229-244 | DOI | Zbl

[20] Kursina I., On the invariance of some classes of holomorphic functions under integral and differential operators, Phd Dissertation, Voroneg (in Russian), 2000

[21] Shamoyan F., “Embedding theorems and description of traces in spaces $H^p(U^n), 0

\infty$”, Mat. Sb. (N.S.), 107(149):3(11) (1978), 446–462 | Zbl

[22] Shamoyan R. F., Li H., “On closed ideals in some spaces of analytic area Nevanlinna type in the unit disk”, International Journal of Mathematics and informatics, 4 (2011) | Zbl

[23] Shamoyan R., Loseva V., “On Hardy type spaces in some domains in $C^n$ and related problems”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 27:2 (2019), 12–37 | Zbl

[24] Shamoyan R., Kurilenko S., “On extremal problems in tubular domains over symmetric cones”, Probl. Anal. Issues Anal., 3(21):1 (2014), 44–65 | DOI | Zbl

[25] Lumer G., “Spaces de Hardy en plusieurs variables complexes”, C.R. Acad. Sci, Paris, 273:3 (1971) | Zbl

[26] Davis C. S., “Iterated limits in $(N^*)(U^n)$”, Trans Amer. Math. Soc., 1973, 139-146 | Zbl

[27] Hahn K., “Properties of holomorphic functions of bounded characteristic on circular domain”, Jour. fur Angew Math., 254 (1972) | Zbl

[28] Shvedenko S. V., “On Taylor coefficients of functions from Bergman spaces in polydisk”, Doklady USSR, 283:2 (1995), 325-328

[29] Nawrocki M., “Linear functionals on the Smirnov class of the unit ball in $C^n$”, Ann. Acad. Sci. Fenn. Ser. A., 1992

[30] Yanagihara N., “Mean growth and Taylor coefficients of some classes of functions”, Ann. Pol. Math., 30 (1974), 37-48 | DOI | Zbl

[31] Nawrocki M., “Multipliers of $(N^*)(U^n)$, linear functionals and the Frechet envelope of the $(N_*)(U^n)$ Smirnov class”, Trans Am. Math. Soc., 332 (1990), 493-506

[32] Nawrocki M., “On the solid huuls of the Nevanlinna and Smirnov classes”, Ann. Acad. Sci. Fenn., 39 (2014), 897-904 | DOI | Zbl

[33] Cho H. R., Kwon E. G., “Growth rate of the functions in the Bergman type spaces”, Jour. Math. Anal. Appl., 285:1 (2003), 275-281 | DOI | Zbl

[34] Choe B. R., Koo H., Smith W., “Carleson measures for area Nevanlinna spaces and applications”, J. Anal. Math, 104 (2008), 207-233 | DOI | Zbl

[35] Choa J., Kim H., “Composition operators between Nevanlinna type spaces”, Jour. Math. Anal. Appl., 257 (2001), 378-402 | DOI | Zbl

[36] Shamoyan F., “A weak invertibily criteria in the weighted $L_p$ spaces of holomorphic functions in the ball”, Siberian Math. Journal, 50:6 (2009), 1115-1131 | DOI

[37] Shamoyan F., “On polynomial approximation in anisotropic weighted spaces of analytic functions in polydisk”, Complex Anal. Oper. Th., 9 (2015), 1135-1156 | DOI | Zbl

[38] Gavrilov V. I., Subbotin A. V., Efimov D. A., Boundary properties of analytic functions (Further Contribution), Moscow Univtrsity Press, Moscow, 2013

[39] Moulin B., Rosay J., “Sur la restriction des fonctions plurisubharmonique”, Indiana Univ M. J., 26 (1977), 869-873 | DOI | Zbl

[40] Stephenson K., “Isometries of the Nevanlinna class”, Indiana Univ. Math. Journal, 26:2 (1977), 307-324 | DOI | Zbl

[41] Drewnowski L., “Topological vector spaces and the Nevanlinna class”, Funct. Approx. Math., 22 (1993), 25-39 | Zbl

[42] Beatrous F., “$H^{\infty}$ interpolation from a subset of boundary”, Pacific Math. Jour., 106:1 (1983) | Zbl

[43] Stoll M., “Main growth and Fourier coefficients of some classes of holomorphic functions in bounded symmetric domains”, Ann. Polon. Math., 45:2 (1985), 161-183 | DOI | Zbl

[44] Stoll M., “The space $N_*$ of holomorphic functions in bounded symmetric domains”, Ann. Pol. Math., 32:1 (1976), 95-110 | DOI | Zbl

[45] Stoll M., “Mean growth and Taylor coefficients of some topological algebras”, Ann Pol. Math., 35:2 (1977), 139-158 | DOI | Zbl

[46] Ueki S., “Composition operators on the Privalov spaces of the unit ball in $C^n$”, J. Korean. Math. Soc., 42:1 (2005), 111-127 | DOI | Zbl

[47] Matsugu Y., Miyazawa J., Ueki S., “A characterization of weighted Bergman-Privalov spaces on the unit ball in $C^n$”, J. Korean. Math. Soc., 39:5 (2002), 783-800 | DOI | Zbl

[48] Shamoyan F., Weighted spaces of analytic functions in the unit ball and polydisk, RIO BGU, Bryansk, 2016, 276 pp. (in Russian)

[49] Gavrilov V. I., Subbotin A. V., “Multipliers and functionals of one dimensional $F(\log N)N$ algebra”, Materials of Proc. of Lobachevskiy Mat. Center, 2002, 97-113 | Zbl

[50] Subbotin A., Coefficient multipliers and linear functionals of Privalov spaces in the unit disk, MGU, 1999

[51] Subbotin A., “On characteristic of boundary values of functions of Nevanlinna class and subspaces in the polydisk and ball”, Moscow University Mathematics Bulletin, 61:5 (2006), 15–19 | Zbl