Effect of turbulence and air velocity on radon progenys
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 200-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a simulation of the distribution of radon progeny over the height of the atmosphere, depending on the amount of turbulent mixing and the vertical air velocity, is presented. The obtained results are compared with the change in the activity ratio of Bi-214/Pb-214 isotopes recorded in rainwater during 3-year observations in Prague. It is found that the reasons for the most common values of Bi-214/Pb-214 can be the height of the lower edge of the cloud of 0.2-1.4 km and the vertical air velocity of 0.1 – 0.2 m / s. The ratio changes slightly from changes in the turbulent mixing, the value of the vertical air movement makes the main contribution. It is found that with the increase in the intensity of rain, a shift in the radioactive equilibrium should occur due to an increase in the velocity of vertical air. Atmospheric inversion is able to balance the volumetric activities of the descendants of atmospheric radon, atmospheric inversion can be identified by the equality between the activities of the radon progeny in the atmosphere at different altitudes or in rainwater. It is shown that the search for the relationship between precipitation intensity and gamma radiation is expose to error, without taking into account the influence of the АBi−214/АPb−214 ratio, due to the unequal activities of the atmospheric isotopes Bi-214 and Pb-214. This error of 7-14
Keywords: radon progeny in the terrestrial atmosphere, mathematical model, vertical air velocity, Bi-214/Pb-214, rain induced gamma activity
Mots-clés : turbulent diffusion, advection, inversion.
@article{VKAM_2021_36_3_a15,
     author = {A. S. Zelinskii and G. A. Yakovlev},
     title = {Effect of turbulence and air velocity on radon progenys},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {200--209},
     year = {2021},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a15/}
}
TY  - JOUR
AU  - A. S. Zelinskii
AU  - G. A. Yakovlev
TI  - Effect of turbulence and air velocity on radon progenys
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 200
EP  - 209
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a15/
LA  - en
ID  - VKAM_2021_36_3_a15
ER  - 
%0 Journal Article
%A A. S. Zelinskii
%A G. A. Yakovlev
%T Effect of turbulence and air velocity on radon progenys
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 200-209
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a15/
%G en
%F VKAM_2021_36_3_a15
A. S. Zelinskii; G. A. Yakovlev. Effect of turbulence and air velocity on radon progenys. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 200-209. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a15/

[1] Thompson I. M. G., et al., Technical recommendations on measurements of external environmental gamma radiation doses, EURADOS report 1999, Office for Official Publications of the European Communities, 1999

[2] Bottardi C., et al., “Rain rate and radon daughters' activity”, Atmospheric Environment, 238 (2020), 117728, DOI: 10.1016/j.atmosenv.2020.117728 | DOI

[3] Barbosa S. M., Miranda P., Azevedo E. B., “Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores)”, Journal of environmental radioactivity, 172 (2017), 218-231 | DOI

[4] Hiemstra P. S. et al., “Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands”, Science of the total environment, 409(1) (2010), 123-133 | DOI

[5] Liu H. et al., “On the characteristics of the wet deposition process using radon as a tracer gas”, Radiation protection dosimetry, 160(1-3) (2014), 83-86 | DOI

[6] Livesay R. J. et al., “Rain-induced increase in background radiation detected by Radiation Portal Monitors”, Journal of environmental radioactivity, 137 (2014), 137-141 | DOI

[7] Burnett J. L., Croudace I. W., Warwick P. E., “Short-lived variations in the background gamma-radiation dose”, Journal of Radiological Protection, 30(3) (2010), 525 | DOI

[8] Takeyasu M. et al., “Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector”, Journal of environmental radioactivity, 88(1) (2006), 74-89 | DOI

[9] Yakovleva V. S., “Modelirovanie vliyaniya sostoyaniya i izmenchivosti atmosfery i litosfery na plotnost' potokov radona i torona s poverkhnosti zemli”, Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 317(2) (2010) (in Russian)

[10] Yakovleva V. S., “In-situ measuring method of radon and thoron diffusion coefficient in soil”, Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 8:1 (2014), 81-85, DOI: 10.18454/2079-6641-2014-8-1-81-85

[11] Inomata Y. et al., “Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan”, Atmospheric Environment, 41(37) (2007), 8043-8057 | DOI

[12] Moriizumi J. et al., “Bi-214/Pb-214 radioactivity ratio in rainwater for residence time estimation of cloud drop-lets and raindrops”, Radiation protection dosimetry, 167(1-3) (2015), 55-58 | DOI

[13] Ambrosino F. et al., “Bi-214/Pb-214 radioactivity ratio three-year monitoring in rainwater in Prague”, Nukleonika, 65(2) (2020), 115-119, DOI: 10.2478/nuka-2020-0018 | DOI

[14] Yakovleva V. S., Nagorskiy P. M., Cherepnev M. S., “Generation of ground atmosphere $\alpha$- $\beta$-and $\gamma$-fields by natural atmospheric radionuclides”, Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 1(8) (2014), 86-96, DOI: 10.18454/2079-6641-2014-8-1-86-96

[15] Yakovleva V. S., Parovik R. I., “Numerical solution of of diffusion advection equation of radon transport in many-layered geological media”, Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2(1) (2011), 46-56, (In Russian) DOI: 10.18454/2079-6641-2011-2-1-44-54 | Zbl

[16] Kalinin Y. G. E., Kingsep A. S., Kosarev V. I., Lobanov A. I., “Transport model of gas impurities spread in urban area”, Matematicheskoe modelirovanie, 12(11) (2000), 47-66 (in Russian) | Zbl

[17] Narayana Rao T. et al., “Understanding the transportation process of tropospheric air entering the stratosphere from direct vertical air motion measurements over Gadanki and Kototabang”, Geophysical research letters, 35(15), (2008) DOI: 10.1029/2008GL034220

[18] Takeyasu M. et al., “Measurements of concentrations and its ratio of radon decay products in rainwater by gamma-ray spectrometry with a low background germanium detector”, International Congress Series, 1276 (2005), 289-290 | DOI