Relation of gamma dose rate with the intensity of rain showers
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 189-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Experimental and theoretical studies of the influence of the intensity, amount and duration of liquid atmospheric precipitation on the formation of $\gamma$-background in the surface layer of the atmosphere are presented. It was observed that precipitation causes an increase in the $\gamma$-radiation dose rate in the form of bursts. In this case, the total amount of precipitation in an event determines the magnitude of the burst of the dose rate, and the intensity of precipitation determines the rate of increase in the dose rate of $\gamma$-radiation. A mathematical model, which establishes a quantitative relationship between the dose rate of $\gamma$-radiation and the intensity (amount) of liquid atmospheric precipitation has been developed and verified ($R_2$ = 0.93).
Keywords: gamma-background, radon decay products, precipitation, atmosphere, mathematical model.
Mots-clés : gamma-radiation
@article{VKAM_2021_36_3_a14,
     author = {A. S. Zelinskii and G. A. Yakovlev and D. E. Fil'trov},
     title = {Relation of gamma dose rate with the intensity of rain showers},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {189--199},
     year = {2021},
     volume = {36},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a14/}
}
TY  - JOUR
AU  - A. S. Zelinskii
AU  - G. A. Yakovlev
AU  - D. E. Fil'trov
TI  - Relation of gamma dose rate with the intensity of rain showers
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 189
EP  - 199
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a14/
LA  - en
ID  - VKAM_2021_36_3_a14
ER  - 
%0 Journal Article
%A A. S. Zelinskii
%A G. A. Yakovlev
%A D. E. Fil'trov
%T Relation of gamma dose rate with the intensity of rain showers
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 189-199
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a14/
%G en
%F VKAM_2021_36_3_a14
A. S. Zelinskii; G. A. Yakovlev; D. E. Fil'trov. Relation of gamma dose rate with the intensity of rain showers. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 189-199. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a14/

[1] Beck H. L., “Gamma radiation from radon daughters in the atmosphere”, Journal of Geophysical Research, 79(15) (1974), 2215-2221 | DOI

[2] Takeuchi N., Katase A., “Rainout-washout model for variation of environmental gamma-ray intensity by precipitation”, Journal of Nuclear Science and Technology, 19(5) (1982), 393-409 | DOI

[3] Thompson I. M. G., Botter-Jensen L., Deme S., Pernicka F., Sáez-Vergara J. C., Technical recommendations on measurements of external environmental gamma radiation doses, EURADOS report 1999, Office for Official Publications of the European Communities, 1999

[4] Lebedyte M., Butkus D., Morkūnas G., “Variations of the ambient dose equivalent rate in the ground level air”, Journal of environmental radioactivity, 64(1) (2003), 45-57 | DOI

[5] Datar G., Vichare G., Raghav A., Bhaskar A., Sinha A. K., Nair K. U., “Response of Gamma-Ray Spectrum During Ockhi Cyclone”, Frontiers in Earth Science, 8:15 (2020)

[6] Mercier J. F., et al., “Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass.”, Journal of environmental radioactivity, 100:7 (2009), 527–533 | DOI

[7] Fujinami N., Watanabe T., Tsutsui T., “Looping variation of correlation between radon progeny concentration and dose rate in outdoor air”, In Radioactivity in the Environment, 7 (2005), 284-289 | DOI

[8] Hiemstra P. H., Pebesma E. J., Heuvelink G. B., Twenhöfel C. J., “Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands”, Science of the total environment, 409(1) (2010), 123-133 | DOI

[9] Burnett J. L., Croudace I. W., Warwick P. E., “Short-lived variations in the background gamma-radiation dose”, Journal of Radiological Protection, 30(3) (2010), 525 | DOI

[10] Liu H., Daisuke K., Motokiyo M., Hirao S., Moriizumi J., Yamazawa H., “On the characteristics of the wet deposition process using radon as a tracer gas”, Radiation protection dosimetry, 160(1-3) (2014), 83-86 | DOI

[11] Livesay R. J., Blessinger C. S., Guzzardo T. F., Hausladen P. A., “Rain-induced increase in background radiation detected by Radiation Portal Monitors”, Journal of environmental radioactivity, 137 (2014), 137–141 | DOI

[12] Yakovleva V. S., “In-situ measuring method of radon and thoron diffusion coefficient in soil”, Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 8:1 (2014), 81-85 (in Russian)

[13] Yakovleva V. S., Parovik R. I., “Numerical solution of of diffusion advection equation of radon transport in many-layered geological media”, Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 1(2) (2011), 46-56 (in Russian) | Zbl

[14] Yakovleva V. S. (2010), “Modelirovanie vliyaniya sostoyaniya i izmenchivosti atmosfery i litosfery na plotnost' potokov radona i torona s poverkhnosti zemli”, Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 317(2) (2010) (in Russian)

[15] Barbosa S. M., Miranda P., Azevedo E. B., “Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores)”, Journal of environmental radioactivity, 172 (2017), 218-231 | DOI

[16] Melintescu A., Chambers S. D., Crawford J., Williams A. G., Zorila B., Galeriu D., “Radon-222 related influence on ambient gamma dose”, Journal of environmental radioactivity, 189 (2018), 67–78 | DOI

[17] Takeyasu M., Iida T., Tsujimoto T., Yamasaki K., Ogawa Y., “Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector”, Journal of environmental radioactivity, 88:1 (2006), 74–89 | DOI

[18] Eckerman K., Endo A., “Observational study of the scavenging of radon daughters by precipitation from the atmosphere”, Environment International, 2 (1996), 181–185

[19] Inomata Y., Chiba M., Igarashi Y., Aoyama M., Hirose K., Atmospheric Environment, 41:37 (2007), 8043–8057 | DOI

[20] Gusev A. A., Martin I. M., Alves M. A., de Abreu A. J., “Simulation of the radiation fallout from gamma-ray measurements”, Modeling Earth Systems and Environment, 1:3 (2015), 18 | DOI

[21] Moriizumi J., Kondo D., Kojima Y., Liu H., Hirao S., Yamazawa H., “214Bi/214Pb radioactivity ratio in rainwater for residence time estimation of cloud droplets and raindrops”, Radiation protection dosimetry, 167:1-3 (2015), 55–58 | DOI

[22] Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A., “Results of optical precipitation gage tests”, Atmospheric and Oceanic Optics, 31:5 (2018), 545–547 | DOI

[23] Eckerman K., Endo A., “ICRP Publication 107. Nuclear decay data for dosimetric calculations. Gamma radiation from radon daughters in the atmosphere”, Annals of the ICRP, 38 (2008), 7 | DOI

[24] Jaeger R. G., Blizard E. P., Grotenhuis M., Hönig A., Jaeger T. A., Eisenlohr H. H., Engineering compendium on radiation shielding, Shielding fundamentals and methods, v. 1, Springer, New York, 1968

[25] Bevelacqua J. J., “Appendix II: Basic Source Geometries and Attenuation Relationships”, Contemporary Health Physics, 2009 https://doi.org/10.14498/9783527626809 | DOI

[26] Shultis J. K., Faw R. E., Radiation shielding and radiological protection, Handbook of nuclear engineering, 2010

[27] Agostinelli S. et al., “GEANT4—a simulation toolkit”, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506:3 (2003), 250–303 | DOI

[28] Butner E. K., Gisina F. A., “Effecient of capture of aerosol particles by rain and cloudy drops”, Proceedings of LGMI, 15, 103–117 (In Russian)