Difference scheme for the convection-diffusion equation of fractional order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 146-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A difference scheme is constructed that approximates the first boundary value problem for the fractional-order convection-diffusion equation. The stability and convergence of the difference scheme.
Mots-clés : convection-diffusion equation
Keywords: boundary-value problem, numerical solution, stability and convergence.
@article{VKAM_2021_36_3_a11,
     author = {E. M. Kazakova},
     title = {Difference scheme for the convection-diffusion equation of fractional order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {146--154},
     year = {2021},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a11/}
}
TY  - JOUR
AU  - E. M. Kazakova
TI  - Difference scheme for the convection-diffusion equation of fractional order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 146
EP  - 154
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a11/
LA  - ru
ID  - VKAM_2021_36_3_a11
ER  - 
%0 Journal Article
%A E. M. Kazakova
%T Difference scheme for the convection-diffusion equation of fractional order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 146-154
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a11/
%G ru
%F VKAM_2021_36_3_a11
E. M. Kazakova. Difference scheme for the convection-diffusion equation of fractional order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 146-154. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a11/

[1] Goloviznin V. M., Kiselev V. P., Korotkiy I. A., “Chislennyye metody resheniya uravneniya drobnoy diffuzii s drobnoy proizvodnoy po vremeni v odnomernom sluchaye”, Preprint IBRAE-2003-12, Institut problem bezopasnogo razvitiya atomnoy energetiki RAN, M., 2002, 35 pp. (In Russian)

[2] Shkhanukov-Lafishev M. KH., Taukenova F. I., “Raznostnyye metody resheniya krayevykh zadach dlya differentsial'nykh uravneniy drobnogo poryadka”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 46:10 (2006), 1871–1881 (In Russian)

[3] Alikhanov, A. A, “A new difference scheme for the time fractional diffusion equation”, Journal of Computational Physics, 280 (2015), 424–438 | DOI | Zbl

[4] Alikhanov, A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Applied Mathematics and Computation, 2012, no. 219, 3938–3946 | DOI | Zbl

[5] Alikhanov A. A., “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Applied Mathematics and Computation, 2015, no. 268, 12–22 | DOI | Zbl

[6] Shogenova Ye. M, “Apriornyye otsenki resheniya krayevykh zadach dlya uravneniya konvektsii-diffuzii drobnogo poryadka”, Izvestiya KBNTS RAN, 80:6 (2017), 60–66 (In Russian)

[7] Li, Dongfang and Liao, Hong-Lin and Sun, Weiwei and Wang, Jilu and Zhang, Jiwei, “Analysis of $ L1 $-Galerkin FEMs for time-fractional nonlinear parabolic problems”, arXiv preprint arXiv:1612.00562 \year 2016