Estimates of the convergence rate in the limit theorems on transition phenomena for branching random processes
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 15-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider branching random processes with discrete time in two assumptions: at the initial moment of time there is one particle and there are large number of particles. In transition phenomena for such branching random processes, estimates of the convergence rate of conditional distributions are obtained.
Keywords:
branching processes, conditional distribution, transition phenomena, a large number of particles, exponential distribution, Essen's theorem.
@article{VKAM_2021_36_3_a1,
author = {Sh. Yu. Jurayev and A. F. Aliyev},
title = {Estimates of the convergence rate in the limit theorems on transition phenomena for branching random processes},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {15--28},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a1/}
}
TY - JOUR AU - Sh. Yu. Jurayev AU - A. F. Aliyev TI - Estimates of the convergence rate in the limit theorems on transition phenomena for branching random processes JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 15 EP - 28 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a1/ LA - ru ID - VKAM_2021_36_3_a1 ER -
%0 Journal Article %A Sh. Yu. Jurayev %A A. F. Aliyev %T Estimates of the convergence rate in the limit theorems on transition phenomena for branching random processes %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 15-28 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a1/ %G ru %F VKAM_2021_36_3_a1
Sh. Yu. Jurayev; A. F. Aliyev. Estimates of the convergence rate in the limit theorems on transition phenomena for branching random processes. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 36 (2021) no. 3, pp. 15-28. http://geodesic.mathdoc.fr/item/VKAM_2021_36_3_a1/