Using deep learning neural network model to solve the problems of classification of unwanted content in social media
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 56-62
Cet article a éte moissonné depuis la source Math-Net.Ru
When solving classification problems using deep learning, they face the problem of model convergence. This problem occurs due to the limited amount of data in the samples.
Keywords:
deep learning models, transfer learning, cross entropy, softmax layers, InceptionV3.
@article{VKAM_2021_35_2_a5,
author = {A. S. Bobin},
title = {Using deep learning neural network model to solve the problems of classification of unwanted content in social media},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {56--62},
year = {2021},
volume = {35},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/}
}
TY - JOUR AU - A. S. Bobin TI - Using deep learning neural network model to solve the problems of classification of unwanted content in social media JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 56 EP - 62 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/ LA - ru ID - VKAM_2021_35_2_a5 ER -
%0 Journal Article %A A. S. Bobin %T Using deep learning neural network model to solve the problems of classification of unwanted content in social media %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 56-62 %V 35 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/ %G ru %F VKAM_2021_35_2_a5
A. S. Bobin. Using deep learning neural network model to solve the problems of classification of unwanted content in social media. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 56-62. http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/
[1] Algoritm gradiyentnogo spuska dlya obucheniya neyronnoy seti, Elektronnyy resursRezhim (data obrashcheniya 25.05.2021) http://prog.tversu.ru/da/02-learning.pdf
[2] Gudfellou YA., Bendzhio I., Kurvill' A., Glubokoye obucheniye, DMK Press, M., 2018, 652 pp.
[3] Sergeyev L., Yudanova A., Tsifrovaya ekonomika, Yurayt, M., 2020, 328 pp.
[4] Shalev-Shvarts SH., Ben-David SH., Idei mashinnogo obucheniya: ot teorii k algoritmam, DMK Press, M., 2019, 436 pp.