Using deep learning neural network model to solve the problems of classification of unwanted content in social media
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When solving classification problems using deep learning, they face the problem of model convergence. This problem occurs due to the limited amount of data in the samples.
Keywords: deep learning models, transfer learning, cross entropy, softmax layers, InceptionV3.
@article{VKAM_2021_35_2_a5,
     author = {A. S. Bobin},
     title = {Using deep learning neural network model to solve the problems of classification of unwanted content in social media},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {56--62},
     year = {2021},
     volume = {35},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/}
}
TY  - JOUR
AU  - A. S. Bobin
TI  - Using deep learning neural network model to solve the problems of classification of unwanted content in social media
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 56
EP  - 62
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/
LA  - ru
ID  - VKAM_2021_35_2_a5
ER  - 
%0 Journal Article
%A A. S. Bobin
%T Using deep learning neural network model to solve the problems of classification of unwanted content in social media
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 56-62
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/
%G ru
%F VKAM_2021_35_2_a5
A. S. Bobin. Using deep learning neural network model to solve the problems of classification of unwanted content in social media. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 56-62. http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a5/

[1] Algoritm gradiyentnogo spuska dlya obucheniya neyronnoy seti, Elektronnyy resursRezhim (data obrashcheniya 25.05.2021) http://prog.tversu.ru/da/02-learning.pdf

[2] Gudfellou YA., Bendzhio I., Kurvill' A., Glubokoye obucheniye, DMK Press, M., 2018, 652 pp.

[3] Sergeyev L., Yudanova A., Tsifrovaya ekonomika, Yurayt, M., 2020, 328 pp.

[4] Shalev-Shvarts SH., Ben-David SH., Idei mashinnogo obucheniya: ot teorii k algoritmam, DMK Press, M., 2019, 436 pp.