Mots-clés : singular coefficient
@article{VKAM_2021_35_2_a2,
author = {M. Kh. Ruziev and F. S. Aktamov},
title = {A boundary value problem for mixed type equation with singular coefficient},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {27--39},
year = {2021},
volume = {35},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a2/}
}
TY - JOUR AU - M. Kh. Ruziev AU - F. S. Aktamov TI - A boundary value problem for mixed type equation with singular coefficient JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 27 EP - 39 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a2/ LA - ru ID - VKAM_2021_35_2_a2 ER -
M. Kh. Ruziev; F. S. Aktamov. A boundary value problem for mixed type equation with singular coefficient. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 27-39. http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a2/
[1] Smirnov M.M., Mixed type equations, Higher school, Moscow, 1985, 304 pp. | MR
[2] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equations, 48:8 (2012), 1127-1136 | Zbl
[3] Ruziev M. Kh., “Boundary value problem for the equation of mixed type with singular coefficient in the domain where the elliptic part is a half-band”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 18:1(18) (2009), 33-40 | Zbl
[4] Gellerstedt S., “Quelques problemes mixtes pour l$`$equation $y^{m}z_{xx}+z_{yy}=0$”, Ark. Math. Astron. Fys., 26A:3 (1938), 1–32
[5] Ruziev M. Kh., “A nonlocal problem for a mixed-type equation with a singular coefficient in an unbounded domain”, Russian Mathematics, 2010, no. 54, 36-43
[6] Mirsaburov M, Ruziev M. Kh., “A boundary value problem for a class of mixed type equations in an unbounded domain”, Differ. Equations, 47:1 (2011), 111-118 | MR | Zbl
[7] Lerner M. E., Pul'kin S. P., “On uniquness of solutions of problems satisfying the Frankl and Tricomi conditions for the general Lavrent'ev-Bitsadze equation”, Differ. Equations, 2:9 (1966), 1255-1263
[8] Bitsadze A. V., Some Classes of Partial Differential Equations, Science, Moscow, 1981, 448 pp.
[9] Gakhov F. D., Chersky Yu. I., Convolution type equations, Science, Moscow, 1978, 295 pp. | MR