A nonlocal problem for a generalized Trikomi equation with a spectral parameter in the unbounded domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 17-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study a nonlocal problem for the generalized Tricomi equation with a spectral parameter in an unbounded domain, the elliptic part of which is the upper half-plane. The uniqueness of the solution to the problem posed is proved by the method of energy integrals. The existence of a solution to the problem is proved by the method of Green's functions and integral equations.
Keywords: non-local problem, unbounded domain, generalized Tricomi equation with spectral parameter, energy integrals method, Green's function method, integral equations method.
@article{VKAM_2021_35_2_a1,
     author = {R. T. Zunnunov},
     title = {A nonlocal problem for a generalized {Trikomi} equation with a spectral parameter in the unbounded domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a1/}
}
TY  - JOUR
AU  - R. T. Zunnunov
TI  - A nonlocal problem for a generalized Trikomi equation with a spectral parameter in the unbounded domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 17
EP  - 26
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a1/
LA  - ru
ID  - VKAM_2021_35_2_a1
ER  - 
%0 Journal Article
%A R. T. Zunnunov
%T A nonlocal problem for a generalized Trikomi equation with a spectral parameter in the unbounded domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 17-26
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a1/
%G ru
%F VKAM_2021_35_2_a1
R. T. Zunnunov. A nonlocal problem for a generalized Trikomi equation with a spectral parameter in the unbounded domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 17-26. http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a1/