Dependence of cosmic ray component in background of atmosphere surface from solar magnetic activity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 114-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using Geant4 toolkit the changes of the flux density and of the dose rates of the secondary cosmic radiation at the heights up to 50 m from the land surface (at a depth of atmosphere about 1030 g/cm2) and depending on solar magnetic activity were estimated. For changes of Wolf's number (sunspots) in the range of 0 — 200 the flux density of reflected from air and the soil g- and b- particles changes from 5.7 to 7 and 0.10 – 0.13 m-2s-1 respectively, for energy from 0 keV to several units of GeV in the ground atmosphere on one meter from the earth. These estimates are much lower than those estimates, for radiation created by the soil and atmospheric radionuclides, which had been received earlier. In comparison with a contribution of radionuclides of the soil of flux density of secondary cosmic radiation about 0.01
Keywords: cosmic radiation, atmosphere, background radiation, Wolf's numbers.
Mots-clés : simulation, Geant4, Monte-Carlo
@article{VKAM_2021_34_1_a9,
     author = {A. S. Zelinskii and G. A. Yakovlev},
     title = {Dependence of cosmic ray component in background of atmosphere surface from solar magnetic activity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {114--121},
     year = {2021},
     volume = {34},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a9/}
}
TY  - JOUR
AU  - A. S. Zelinskii
AU  - G. A. Yakovlev
TI  - Dependence of cosmic ray component in background of atmosphere surface from solar magnetic activity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 114
EP  - 121
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a9/
LA  - en
ID  - VKAM_2021_34_1_a9
ER  - 
%0 Journal Article
%A A. S. Zelinskii
%A G. A. Yakovlev
%T Dependence of cosmic ray component in background of atmosphere surface from solar magnetic activity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 114-121
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a9/
%G en
%F VKAM_2021_34_1_a9
A. S. Zelinskii; G. A. Yakovlev. Dependence of cosmic ray component in background of atmosphere surface from solar magnetic activity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 114-121. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a9/

[1] Mitchell A. L., Kouzes R. T., Borgardt J. D., Contribution to Gamma Ray Background Between 0 and 4 MeV, Washington, 2009

[2] Inan S., Ertekin K., Seyis C., Simsek S., Kulak F., Dikbas A., Tan O., Ergintav S., Cakmak R., Yoruk A., Cergel M., Yakan H., Karakus H., Saatcilar R., Akcig Z., Iravul Y., Tuzel B., “Multi-disciplinary earthquake researches in Western Turkey: Hints to select sites to study geochemical transients associated to seismicity”, Acta Geophysica, 58:5 (2010), 767–813 | DOI

[3] Moreno V., Bach J., Font L.I., Baixeras C., Zarroca M., Linares R., Roque C., “Soil radon dynamics in the Amer fault zone. An example of very high seasonal variations”, 151, no. 1, 2016, 293-303

[4] Yakovlev G., Cherepnev M., Nagorskiy P., Yakovleva V., “Investigation of features in radon soil dynamics and search for influencing factors”, AIP Conference Proceedings, 1938:1 (2018), 020014, AIP Publishing LLC | DOI

[5] Agostinelli S., Allison J., Amako K. A., Apostolakis J., Araujo H., Arce P. et al, “GEANT4 — a simulation toolkit”, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506:3 (2003), 250–303 | DOI

[6] Yakovleva V. S., Karataev V. D., Zukau V. V., “Modeling of atmospheric fields of $gamma$- and $beta$-radiations formed by soil radionuclides”, Bulletin KRASEC, Physical Mathematical Sciences, 1:2 (2011), 64–73

[7] ISO 5878, Reference Atmospheres for Aerospace Use, 1982

[8] Tomsk Observatory of Radioactivity and Ionizing Radiation http://portal.tpu.ru/portal/page/portal/torii/eng/Main, Retrieved on: 1 Feb 2021

[9] Gomez-Coral D. M., Rocha A. M., Grabski V., Datta, A., von Doetinchem P., Shukla A., “Deuteron and antideuteron production simulation in cosmic-ray interactions”, Physical Review D, 98:2 (2018), 023012 | DOI

[10] MacFarlane R. E., Data testing of ENDF/B-VI, International Conference on Nuclear Data for Science and Technology, Los Alamos Labarotory preprint, LA-UR-94-1541, Gatlinburg, Tennessee, 1994

[11] ISO 15390, Space environment (natural and artificial) – Galactic cosmic ray model, 2004

[12] Georgievskii D. V., Shamolin M. V., “Sessions of the workshop of the mathematics and mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after VV Trofimov”, Journal of Mathematical Sciences, 161:5 (2009), 603–614 | DOI | MR

[13] Nymmik R. A., “Time lag of galactic cosmic ray modulation: conformity of general regularities and influence of particle energy spectra”, Advances in Space Research, 26:11 (2000), 1875–1878 | DOI

[14] Sources and Effects of Ionizing Radiation United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008, Report to the General Assembly, with Scientific Annexes, Volume I, United Nations, New York, 2010, 379 pp.

[15] Royal Observatory of Belgium, Brussels http://www.sidc.be/silso/home, Retrieved on: 1 Feb 2021