On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 63-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce new multifunctional mixed norm analytic Herz-type spaces in tubular domains over symmetric cones and provide new sharp embedding theorems for them. Some results are new even in case of onefunctional holomorphic spaces. Some new related sharp results for new multifunctional Bergman-type spaces will be also provided under one condition on Bergman kernel.
Keywords:
Bergman spaces, tubular domains over symmettic cones, embedding theorems, analytic functions.
Mots-clés : Herz spaces
Mots-clés : Herz spaces
@article{VKAM_2021_34_1_a5,
author = {R. F. Shamoyan and E. B. Tomashevskaya},
title = {On new sharp embedding theorems for multifunctional {Herz-type} and {Bergman-type} spaces in tubular domains over symmetric cones},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {63--79},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/}
}
TY - JOUR AU - R. F. Shamoyan AU - E. B. Tomashevskaya TI - On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 63 EP - 79 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/ LA - en ID - VKAM_2021_34_1_a5 ER -
%0 Journal Article %A R. F. Shamoyan %A E. B. Tomashevskaya %T On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 63-79 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/ %G en %F VKAM_2021_34_1_a5
R. F. Shamoyan; E. B. Tomashevskaya. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/