Mots-clés : Herz spaces
@article{VKAM_2021_34_1_a5,
author = {R. F. Shamoyan and E. B. Tomashevskaya},
title = {On new sharp embedding theorems for multifunctional {Herz-type} and {Bergman-type} spaces in tubular domains over symmetric cones},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {63--79},
year = {2021},
volume = {34},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/}
}
TY - JOUR AU - R. F. Shamoyan AU - E. B. Tomashevskaya TI - On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 63 EP - 79 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/ LA - en ID - VKAM_2021_34_1_a5 ER -
%0 Journal Article %A R. F. Shamoyan %A E. B. Tomashevskaya %T On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 63-79 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/ %G en %F VKAM_2021_34_1_a5
R. F. Shamoyan; E. B. Tomashevskaya. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a5/
[8] Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263:11 (2012), 3449–3491 | DOI | MR
[9] Abate M., Saracco A., “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR
[10] Arsenović M., Shamoyan R. F., On embeddings, traces and multipliers in harmonic function spaces, arXiv:1108.5343 | MR
[11] Arsenović M., Shamoyan R. F., Embedding theorems for harmonic multifunctional spaces on $R^{n+1}$, arXiv:1109.2419 | MR
[12] Beatrous F., “$L^p$ estimates for extensions of holomorphic functions”, Michigan Math. Journal, 32:3 (1985), 361–380 | DOI | MR
[13] Bekolle D., Berger C., Coburn L., Zhu K., “BMO in the Bergman metric on bounded symmetric domains”, Journal of Functional Analysis, 93:2 (1990), 310–350 | DOI | MR
[14] Cohn W., “Weighted Bergman Projection and tangential area integrals”, Studia Math, 106:1 (1993), 121–150 | DOI | MR
[15] Cima J., Mercer P., “Composition operators between Bergman spaces in convex domains in $\mathbb{C}^n$”, J. Operator theory, 33 (1995), 363–369 | MR
[16] Carleson L., “Interpolations by bounded analytic function and the corona problem”, Annals of Mathematics, 1962, 547–559 | DOI | MR
[17] Duren P. L., “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75 (1969), 143–146 | DOI | MR
[18] Englis M., Hänninen T., Taskinen J., “Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous”, Houston Journal of Mathematics, 32:1 (2006), 253–275 | MR
[19] W. W. Hastings, “A Carleson measure theorem for Bergman spaces”, Proc. Am. Math. Soc., 52 (1975), 237–241 | DOI | MR
[20] Hörmander L., An introduction to complex analysis in several variables, North Holland, Amsterdam, 1973 | MR
[21] Luecking D., “A technique for characterizing Carleson measures on Bergman spaces”, Proc. Amer. Math. Soc., 87 (1983), 656–660 | DOI | MR
[22] Mercer P., Cima J., “Composition operators between Bergman spaces on convex domains in $\mathbb C^n$”, J. Operator Theory, 33:2 (1995), 363–369 | MR
[23] Oleinik V. L., Pavlov B. S., “Embedding theorems for weighted classes of harmonic and analytic functions”, Journal of Mathematical Sciences, 2:2 (1974), 135–142 | MR
[24] Oleinik V. L., “Embeddings theorems for weighted classes of harmonic and analytic functions”, J. Soviet Math., 9 (1978), 228–243 | DOI
[25] Ortega J., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR
[26] Rudin W., Function theory in the unit ball of $\mathbb C^n$, Springer-Verlag, Berlin, 1980 | MR
[27] Shamoyan R. F., “On some characterizations of Carleson type measure in the unit ball”, Banach J. Math. Anal., 3:2 (2009), 42–48 | DOI | MR
[28] Shamoyan R. F., Kurilenko S., “On a New Embedding Theorem in Analytic Bergman Type Spaces in Bounded Strictly Pseudoconvex Domains of $n$-dimensional Complex Space”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 383-388 | MR
[29] Shamoyan R. F., Maksakov S. P., “Embedding theorems for weighted anisotropic spaces of holomorphic functions in strongly pseudoconvex domains”, Romai J., 2017, no. 1(13), 71–92 | MR
[30] Shamoyan R. F., Mihić O., “Embedding theorems for weighted anisotropic spaces of holomorphic functions in tubular domains”, Romai J, 2017, no. 1(13), 93–115 | MR
[31] Shamoyan R. F., Mihić O., “On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones”, Czechoslovak Math. J., 2018 | MR
[32] Shamoyan R. F., Povpritz E., “Multifunctional analytic spaces and new sharp embedding theorems in strongly pseudoconvex domains”, Krag. Math. J., 37 (2013), 221–244 | MR
[33] Wogen W. R., Cima J. A., “A Carleson measure theorem for the Bergman space on the ball”, J. Operator Theory, 7 (1982), 157–165 | MR
[34] Zhu K., Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York, 2005 | MR
[35] Faraut J., Koranyi A., Analysis on symmetric cones, Oxford University Press, New York, 1994, 382 pp. | MR
[36] Bekolle D., Bonami A., Garrigos G. et al, “Lecture notes on Bergman projectors in tube domains over cones”, Proceedings of the international Workshop on classical Analysis, Yaounde, 2001, 75 pp. | MR
[37] Debertol D., “Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains”, Dottorato di Ricerca in Matematica, Universita di Genova, Politecnico di Torino, 2003 | MR
[38] Sehba B., Bergman-type integral operators in tube domains over symmetric cones, Proceedings of Edinburg Math. Soc. | MR
[39] Duren P., Schuster A., Bergman spaces, Mathematical Surveys and Monographs, v. 100, AMS, 2004 | MR
[40] Arsenović M., Shamoyan R., “On some extremal problems in spaces of harmonic functions”, ROMAI Journal, 2011, no. 7, 13-34 | MR
[41] Shamoyan R. F., Mihić O., “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bollet. de la Asoc. Matematica Venezolana, 42:2 (2010), 89-103 | MR
[42] Shamoyan R., Mihić O., “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 2009, no. 6, 514-517 | MR
[43] Sehba B., Operators in some analytic function spaces and their dyadic counterparts, PhD, Dissertation, Glasgow, 2009
[44] Sehba B., “Hankel operators on Bergman spaces of tube domains over symmetric cones”, Integr. eq. operator theory, 62 (2008), 233-245 | DOI | MR
[45] Bekolle D., Bonami A., Garrigos G., Nana C., Peloso M., Ricci F., Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis, Yaounde, 2001, 75 pp. | MR
[46] Sehba B. F. and Nana C., “Carleson Embeddings and two operators on Bergman spaces of tube domains over symmetric cones”, Integr. Equ. Oper. Theory, 83 (2015), 151-178 | DOI | MR
[47] Arsenovic M., Shamoyan R., Embedding relations and boundedness of the Bergman projection in tube domains over symmetric cones, Filomat, 2011 | MR