Nonlocal problem with the integral condition for a loaded heate equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 47-56
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a non-local problem with the integral condition for the loaded heat equation, where the loaded term is a derivative of the second order from an unknown function at the origin. The existence and uniqueness of a regular solution is proven. Using the Green's functions and thermal potentials, the existence of a regular solution to this problem is proved. The proof is based on the reduction of the formulated problem to the second kind Volterra integral equation with a weak singularity. The solvability of the obtained Volterra integral equations implies the existence of a unique solution to the problem.
Keywords:
non-local problem, integral condition, loaded equation, thermal conductivity, Green's function.
@article{VKAM_2021_34_1_a3,
author = {M. M. Sagdullayeva},
title = {Nonlocal problem with the integral condition for a loaded heate equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {47--56},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a3/}
}
TY - JOUR AU - M. M. Sagdullayeva TI - Nonlocal problem with the integral condition for a loaded heate equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 47 EP - 56 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a3/ LA - ru ID - VKAM_2021_34_1_a3 ER -
M. M. Sagdullayeva. Nonlocal problem with the integral condition for a loaded heate equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a3/