The keldysh problem for a mixed-type three-dimensional equation with three singular coefficients
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 29-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study the Keldysh problem for a three-dimensional mixed-type equation with three singular coefficients in a rectangular parallelepiped. Based on the completeness property of systems of eigenfunctions of two one-dimensional spectral problems, a uniqueness theorem is proved. The solution to the problem posed is constructed as the sum of a double Fourier-Bessel series.
Keywords: Keldysh problem, mixed type equation, spectral method, Bessel function.
Mots-clés : singular coefficient
@article{VKAM_2021_34_1_a2,
     author = {K. T. Karimov},
     title = {The keldysh problem for a mixed-type three-dimensional equation with three singular coefficients},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {29--46},
     year = {2021},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a2/}
}
TY  - JOUR
AU  - K. T. Karimov
TI  - The keldysh problem for a mixed-type three-dimensional equation with three singular coefficients
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 29
EP  - 46
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a2/
LA  - ru
ID  - VKAM_2021_34_1_a2
ER  - 
%0 Journal Article
%A K. T. Karimov
%T The keldysh problem for a mixed-type three-dimensional equation with three singular coefficients
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 29-46
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a2/
%G ru
%F VKAM_2021_34_1_a2
K. T. Karimov. The keldysh problem for a mixed-type three-dimensional equation with three singular coefficients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a2/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravneniy ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183

[2] Pul'kin S. P., “O yedinstvennosti resheniya singulyarnoy zadachi Gellersteda”, Izv. vuzov. Ser.: Matematika, 19:6 (1960), 214–225

[3] Vostrova L. Ye., Pul'kin S. P., “Singulyarnaya zadacha s normal'noy proizvodnoy”, Volzhskiy matematicheskiy sbornik, 1966, no. 5, 49–57

[4] Sabitov K. B., K teorii uravneniy smeshannogo tipa, Fizmatlit, Moskva, 2014, 304 pp.

[5] Safina R. M., “Keldysh problem for a mixed-type equation of the second kind with the Bessel operator”, Differential Equations, 51:10 (2015), 1347–1359 | DOI

[6] Safina R. M., “Keldysh problem for mixed type equation with strong characteristic degeneration and singular coefficient”, Russian Mathematics, 61:8 (2017), 46–54 | DOI

[7] Zaitseva N. V., “Keldysh type problem for B-hyperbolic equation with integral boundary value condition of the first kind”, Lobachevskii Journal of Mathematics, 38:1 (2017), 162–169 | DOI

[8] Karimov K. T., “Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:1 (2020), 31–48 | DOI

[9] Urinov A. K., Karimov K. T., “The unique solvability of boundary value problems for a 3D elliptic equation with three singular coefficients”, Russian Mathematics, 63:2 (2019), 62–73 | DOI

[10] Urinov A. K., Karimov K. T., “Zadacha Dirikhle dlya trekhmernogo uravneniya smeshannogo tipa s tremya singulyarnymi koeffitsiyentami”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya fiz.-mat. nauki, 21:4 (2017), 665–683

[11] Karimov K. T., “Zadacha tipa Dirikhle dlya trekhmernogo uravneniya smeshannogo tipa s tremya singulyarnymi koeffitsiyentami v polubeskonechnom parallelepipede”, Byulleten' Instituta matematiki, 2020, no. 2, 68–82

[12] Urinov A. K., Karimov K. T., “The Dirichlet Problem for an Elliptic Equation with Singular Coefficients in a Semi-Cylindrical Domain”, Lobachevskii Journal of Mathematics, 41:9 (2020), 1898–1909 | DOI

[13] Urinov A. K., Karimov K. T., “Zadacha Dirikhle dlya ellipticheskogo uravneniya s tremya singulyarnymi koeffitsiyentami”, Itogi nauki i tekhn. ser. sovrem. mat. i yeye pril. temat. obz., 156 (2018), 30–40

[14] Tikhonov A. N., Samarskiy A. A., Uravneniya matematicheskoy fiziki, v. 2-33, Nauka, Moskva, 1972, 810 pp.

[15] Vatson G. N., Teoriya besselevykh funktsiy, Izd. IL, Moskva, 1949, 798 pp.

[16] Olver F., Vvedeniye v asimptoticheskiye metody i spetsial'nyye funktsii, Mir, Moskva, 1986, 381 pp.

[17] Lebedev N. N., Spetsial'nyye funktsii i ikh prilozheniya, Fizmatlit, Moskva, 1963, 358 pp.

[18] Tolstov G. P., Ryady Fur'ye, Nauka, Moskva, 1980, 384 pp.

[19] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniya, v. 2, Fizmatlit, Moskva, 2001, 800 pp.

[20] Arnol'd V. I., “Malyye znamenateli i problemy ustoychivosti dvizheniya v klassicheskoy i nebesnoy mekhanike”, UMN, 18:6 (1963), 91–192