Influence of ambient temperature on gamma scintillation detector readings
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 203-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Scintillation detectors, which are widely used in environmental field study for measurement of radiation dose, are devices that experience wide range of temperature changes when in use. One of the characteristic of scintillation detectors are that, they are very sensitive to change in temperature and hence, every scintillation detector have temperature stabilization inside them. The temperature-dependence coefficient which is part of the detector calculation is the simplest stabilization method that is used. In this work, the BDKG-03 scintillation detector which is used to measure gamma radiation was operated under a controlled condition using a climatic chamber. The BDKG-03 scintillation detector has a temperature stabilizing built-in algorithm. The dose rate and count rate of the gamma background radiation for different temperatures ranging from -40 – +40 ^{\circ}C in increment of 10 ^{\circ}C were measured and studied. The main aim of this work was to study the effect of different ranges of temperature for subsequent calculation of temperature correction coefficient. An analytical result from the experimental result shows that dose rate measurement using the built-in algorithm gives a precise reading as temperature increases. The temperature correction coefficient was found based on dependence.
Keywords: dose rate, scintillation detector, climatic chamber, temperature correction coefficient, radiation.
@article{VKAM_2021_34_1_a16,
     author = {E. Yeboah and S. V. Smirnov and G. A. Yakovlev},
     title = {Influence of ambient temperature on gamma scintillation detector readings},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {203--211},
     year = {2021},
     volume = {34},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a16/}
}
TY  - JOUR
AU  - E. Yeboah
AU  - S. V. Smirnov
AU  - G. A. Yakovlev
TI  - Influence of ambient temperature on gamma scintillation detector readings
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 203
EP  - 211
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a16/
LA  - en
ID  - VKAM_2021_34_1_a16
ER  - 
%0 Journal Article
%A E. Yeboah
%A S. V. Smirnov
%A G. A. Yakovlev
%T Influence of ambient temperature on gamma scintillation detector readings
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 203-211
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a16/
%G en
%F VKAM_2021_34_1_a16
E. Yeboah; S. V. Smirnov; G. A. Yakovlev. Influence of ambient temperature on gamma scintillation detector readings. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 203-211. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a16/

[1] Von Hippel, Frank N., “The radiological and psychological consequences of the Fukushima Daiichi accident”, Bulletin of the Atomic Scientists, 67:5 (2011), 27–36 | DOI

[2] Friedman, Peter S., Plasma panel based radiation detector, Patent No. 7, 683, 340. 23 Mar. 2010, U. S., 2010

[3] Lambert, Jamil, et al., “In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector”, Medical physics, 34:5 (2007), 1759–1765 | DOI

[4] Nishizawa, Kunihide, and Hisashi Maekoshi, “Thyroidal 125I monitoring system using an NaI (Tl) survey meter”, Health physics, 58:2 (1990), 165–169 | DOI

[5] Rozsa Csaba M., Temperature compensated scintillation detector and method, Patent No. 6, 407, 390. 18 Jun. 2002, U.S.

[6] Kelsingazina R. E., Investigation of the temperature behavior of the NaI (Tl) scintillation detector, 2020

[7] Mensah, Kwesi, et al., “Study on the performance of a temperature and humidity chamber”, Hanbat National University, 2016, 351–352

[8] Mac Lochlainn, D., et al., “A comparison of climatic chamber hygrothermal characterization techniques as described in IEC60068”, International Journal of Thermophysics, 36:8 (2015), 2199–2214 | DOI

[9] Casanovas, R., Morant, J. J., Salvadó, M., “Temperature peak-shift correction methods for NaI (Tl) and LaBr3 (Ce) gamma-ray spectrum stabilisation”, Radiation measurements, 47:8 (2012), 588–595 | DOI

[10] Mitra, P., Roy, A. S., Verma, A. K., Pant, A. D., Prakasha, M. S., Anilkumar, S., Kumar, A. V., “Application of spectrum shifting methodology to restore NaI (Tl)-recorded gamma spectra, shifted due to temperature variations in the environment”, Applied Radiation and Isotopes, 107 (2016), 133–137 | DOI | MR

[11] Fujibuchi, Toshioh, Takatoshi Toyoda, and Kento Terasaki, “Measurement of basic characteristics of scintillation-type radiation survey meters with multi-pixel photon counter”, Applied Radiation and Isotopes, 140 (2018), 12–17 | DOI