Analysis of 11-years dynamics in spatial distribution of lightning density in north asia
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 159-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study, we analyzed 11-year time series of lightning strokes number over two large areas with increased lightning density (more than 10 times compared with the values in the surrounding area). The so-called “eastern” region is 40–55o N, 110–140o E, and the “western” region is 47–62o N, 60–90o E. The discrete decomposition of the series (of daily resolution) using the Meyer wavelet function to fifth level (eastern) and forth level (western) showed a shift in the maximum of seasonal variation in the regions from the beginning of June to beginning of August from year to year with a period of about 3 years. The periodicity in the seasonal variations of lightning number obtained by the Fourier spectra appeared in the western region more clearly: 4, 7, 14 days. The spatial distribution of lightning density in North Asia can be described as a belt around 50o N with a more than 5 degrees latitude shift to the south in the east with significant peaks in density especially in two regions. The analytical expression is suggested in the form of a latitudinal Gaussian function varying with longitude summarized with a linear function as the background decline to the north of the general lightning activity level. Thus, estimates of the variability of the analytical expression parameters defined the latitudinal-longitudinal distribution of the lightning density on a ten-year scale were obtained.
Keywords: lightning activity, thunderstorm, North Asia, analytical expression.
@article{VKAM_2021_34_1_a13,
     author = {L. D. Tarabukina and V. I. Kozlov and D. E. Innokentiev},
     title = {Analysis of 11-years dynamics in spatial distribution of lightning density in north asia},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {159--173},
     year = {2021},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a13/}
}
TY  - JOUR
AU  - L. D. Tarabukina
AU  - V. I. Kozlov
AU  - D. E. Innokentiev
TI  - Analysis of 11-years dynamics in spatial distribution of lightning density in north asia
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 159
EP  - 173
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a13/
LA  - ru
ID  - VKAM_2021_34_1_a13
ER  - 
%0 Journal Article
%A L. D. Tarabukina
%A V. I. Kozlov
%A D. E. Innokentiev
%T Analysis of 11-years dynamics in spatial distribution of lightning density in north asia
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 159-173
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a13/
%G ru
%F VKAM_2021_34_1_a13
L. D. Tarabukina; V. I. Kozlov; D. E. Innokentiev. Analysis of 11-years dynamics in spatial distribution of lightning density in north asia. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 159-173. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a13/

[1] Cecil D. J., Buechler D. E., Blakeslee R. J., “Gridded lightning climatology from TRMM-LIS and OTD: Dataset description”, Atmospheric Research, 135 (2014), 404–414 | DOI

[2] Snegurov A. V., Snegurov V. S., “Sravnenie kharakteristik mnogopunktovykh grozo-pelengatsionnykh sistem”, Trudy Glavnoy geofizicheskoy observatorii im. A.I.Voeykova, 2019, no. 595, 22–62 (in Russian)

[3] Snegurov A. V., Snegurov V. S., “Sistema mestoopredeleniya groz”, Trudy Glavnoygeofizicheskoy observatorii im. A.I. Voeykova, 2017, no. 586, 117–140 (in Russian)

[4] Adzhiev A. Kh. et al.,, “Territorial'nye osobennosti grozovoy aktivnosti na SevernomKavkaze po meteorologicheskim i instrumental'nym dannym”, Meteorologiya i gid-rologiya, 2015, no. 4, 46–-52 (in Russian)

[5] Adzhieva A. A., Kokoeva M. N., “Dinamicheskiy monitoring dannykh parametrov tokov molniy na territorii yuga evropeyskoy chasti Rossii”, Inzhenernyy vestnik Dona, 2019, no. 5, 3 (in Russian))

[6] wwlln.net (data obrascheniya: 8.08.2020).

[7] Shankibaeva M. Kh., Karanina S. Yu., Kocheeva N. A., “Izuchenie kharaktera proyavleniya groz v gorakh yuga Zapadnoy Sibiri”, V sbornike: sovremennye tendentsii i perspektivy razvitiya gidrometeorologii v Rossii. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii, 2018, 428-433 (in Russian)

[8] Said R. K., Cohen M. B., Inan U. S., “Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations”, Journal of Geophysical Research: Atmospheres, 118:13 (2013), 6905–6915 | DOI

[9] Kononov I. I. et al., “Amplitudno-giperbolicheskiy metod mestoopredeleniya molnie-vykh razryadov”, Trudy Glavnoy geofizicheskoy observatorii im. A.I. Voeykova, 2016, no. 581, 176–192 (in Russian)

[10] Orlova A. A., Valeev A. R., Raskulova A. I., “Sistemy pelengatsii grozovoy aktivnosti”, Elektrotekhnicheskie kompleksy i sistemy, 2017, 164–168 (in Russian)

[11] Moskovenko V. M., Znamenshchikov B. P., Zolotarev S. V., “Primenenie sistemy grozopelengatsii «Vereya-MR» v interesakh elektroenergetiki Rossii”, Novoe v rossiyskoy elektroenergetike, 2012, no. 2, 15–23 (in Russian)

[12] Koehler T. L., “Cloud-to-ground lightning flash density and thunderstorm day distributions over the contiguous United States derived from NLDN measurements: 1993–2018”, Monthly Weather Review, 148:1 (2020), 313–332 | DOI

[13] Kozlov V. I., Mullayarov V. A., Karimov R. R., “Prostranstvennoe raspredelenie plotnosti grozovykh razryadov na Vostoke Rossii po dannym distantsionnykh nablyudeniy”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 8:3 (2011), 257–262 (in Russian)

[14] Dowden R. L., Brundell J. B., Rodger C. J., “VLF lightning location by time of group arrival (TOGA) at multiple sites”, J. Atmos. Sol. Terr. Phys., 64 (2002), 817–830 | DOI

[15] Hutchins M. L. et al., “Far-field power of lightning strokes as measured by the World Wide Lightning Location Network”, J. Atmos. Ocean. Technol., 29 (2012), 1102–1110 | DOI

[16] Rodger C. J. et al., “Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study”, Ann. Geophys., 24 (2006), 3197–3214 | DOI

[17] De Souza P. et al., “The intracloud/cloud-to-ground lightning ratio in Southeastern Brazil”, Atmos. Res., 91 (2009), 491–499 | DOI

[18] Soriano L.R., de Pablo F., “Total flash density and the intracloud / cloud ground lightning ratio over the Iberian Peninsula”, J. Geophys. Res. Atmos., 112 (2007), D13114

[19] Adzhiev A. H., Kuliev D. D., “Characteristics of Storm Activity and Parameters of Lightning Discharges in the South of the European Part of Russia”, Izv. Atmos. Ocean. Phys., 54 (2018), 372–379 | DOI

[20] Rudlosky S. D., Shea D. T., “Evaluating WWLLN performance relative to TRMM/LIS”, Geophys. Res. Lett., 40 (2013), 2344–2348 | DOI

[21] Burgesser R.E., “Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS)”, Q. J. R. Meteorol. Soc., 143 (2017), 2809–2817 | DOI

[22] Abarca S. F., Corbosiero K. L., Galarneau T. J., “An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth”, J. Geophys. Res. Atmos., 115 (2010) | DOI

[23] Holzworth R. H. et al., “Global Distribution of Superbolts”, J. Geophys. Res. Atmos., 124 (2019), 9996–10005 | DOI

[24] Hutchins M. L. et al., “Relative detection efficiency of the World Wide Lightning Location Network”, Radio Sci., 2012, no. 47, 1–9

[25] Tarabukina L. D., Kozlov V. I., Karimov R. R., “Analiticheskoe vyrazhenie dlya raspredeleniya plotnosti grozovykh razryadov po territorii Severnoy Azii”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13:3 (2016), 184–191 (in Russian)

[26] Williams E., Stanfill S., “The physical origin of the land-ocean contrast in lightning activity”, Comptes Rendus Physique, 3:10 (2002), 1277–1292 | DOI

[27] Hutchins M. L., et al., “Radiated VLF energy differences of land and oceanic lightning”, Geophysical Research Letters, 40:10 (2013), 2390–2394 | DOI

[28] Boccippio D. J., Goodman S. J., Heckman S., “Regional differences in tropical lightning distributions”, Journal of Applied Meteorology, 39:12 (2000), 2231–2248 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[29] Zhang W. et al., “Lightning climatology over the northwest Pacific region: An 11-year study using data from the World Wide Lightning Location Network”, Atmospheric Research, 210 (2018), 41–57 | DOI

[30] Tsurushima D., Sakaida K., Honma N., “Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan”, Prog. in Earth and Planet. Sci., 4 (2017), 7 | DOI

[31] Sato M. et al., “Global distribution of intense lightning discharges and their seasonal variations”, Journal of Physics D: Applied Physics, 41:23 (2008), 234011 | DOI

[32] Beirle S. et al., “Global patterns of lightning properties derived by OTD and LIS”, Natural Hazards and Earth System Sciences, 14:10 (2014), 2715–2726 | DOI

[33] Mackerras D. et al., “Global lightning: Total, cloud and ground flash estimates”, Journal of Geophysical Research: Atmospheres, 103:D16 (1998), 19791–19808 | DOI

[34] Moskovskiy S. B., Sergeev A. N., Lalina N. A., “Ochistka signala ot shumov s ispol'zovaniem veyvlet-preobrazovaniya”, Universum: tekhnicheskie nauki, 2015, no. 2 (15) (in Russian)

[35] Dashko N. A., Kurs lektsiy po sinopticheskoy meteorologii, DVGU, Vladivostok, 2005 (in Russian)

[36] Kozlov V. I., Mullayarov V. A., Grozovaya aktivnost' v Yakutii, YaF Izd-va SO RAN, Yakutsk, 2004, 103 pp. (in Russian)

[37] Tarabukina L., Kozlov V., “Seasonal Variability of Lightning Activity in Yakutia in 2009–2019”, Atmosphere, 11:9 (2020), 918 | DOI