On a boundary value problem for a mixed equation with three planes of type change in an infinite prismatic domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 19-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, in an infinite prismatic domain, one problem is formulated and studied for a parabolic-hyperbolic equation with three planes of type change. The main methods for studying the problem posed is the Fourier transform. The uniqueness and existence of a solution to the problem is proved.
Keywords: equation with three planes of type change, regular solution, extremum principle, equation with three planes of type change, regular solution, extremum principle
Mots-clés : Fourier transform, solution estimation, Fourier transform, solution estimation.
@article{VKAM_2021_34_1_a1,
     author = {B. I. Islomov and G. B. Umarova},
     title = {On a boundary value problem for a mixed equation with three planes of type change in an infinite prismatic domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {19--28},
     year = {2021},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a1/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - G. B. Umarova
TI  - On a boundary value problem for a mixed equation with three planes of type change in an infinite prismatic domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 19
EP  - 28
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a1/
LA  - ru
ID  - VKAM_2021_34_1_a1
ER  - 
%0 Journal Article
%A B. I. Islomov
%A G. B. Umarova
%T On a boundary value problem for a mixed equation with three planes of type change in an infinite prismatic domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 19-28
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a1/
%G ru
%F VKAM_2021_34_1_a1
B. I. Islomov; G. B. Umarova. On a boundary value problem for a mixed equation with three planes of type change in an infinite prismatic domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 19-28. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a1/

[1] Bitsadze A. V. Ob odnom trekhmernom analoge zadachi Trikomi, Sibirskii matematicheskii zhurnal, 3 (1962), 642-644 | Zbl

[2] Nakhushev A. M., “Ob odnom trekhmernom analoge zadachi Gellerstedta”, Differentsialnye uravneniya, 4:1 (1968), 52-62 | Zbl

[3] Salakhitdinov M. S., Islamov B., “O trekhmernom analoge zadachi Trikomi dlya uravneniya smeshannogo tipa”, Doklady AN SSSR, 311:4 (1990), 797-801 | Zbl

[4] Ponomarev S. M., “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v trekhmernykh oblastyakh”, Doklady AN SSSR, 246:6 (1979), 1303-1306 | Zbl

[5] Ezhov A. M., Pulkin S. P., “Otsenka resheniya zadachi Trikomi dlya odnogo klassa uravnenii smeshannogo tipa”, Doklady AN SSSR, 193:5 (1970), 978-980 | Zbl

[6] Dzhuraev T. D., Sopuev A., Mamazhonov M., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, FAN, Tashkent, 1986, 220 pp.

[7] Islomov B. I., Alikulov E. K., “O trekhmernom analoge zadachi Gellerstedta dlya nagruzhennogo uravneniya elliptiko-giperbolicheskogo tipa”, Uzbekskii matematicheskii zhurnal, 2012, no. 1., 61-73

[8] Yuldashev T. K. , Islomov B. I. , Alikulov E. K., “Boundary-value problems or loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains”, Lobachevskii Journal of mathematics, 41:5 (2020), 922-940 | DOI

[9] Islomov B. I., Umarova G. B., “Three-dimensional Problems for a Parabolic-Hyperbolic Equation with Two Planes of Change of Type”, Lobachevski Journal of Mathematics, 41:9 (2020), 1811-1822 | DOI | Zbl

[10] Umarova G. B., “Trekhmernaya zadacha Trikomi dlya parabolo-giperbolicheskogo uravneniya c dvumya ploskostyami izmeneniya tipa”, Vestnik Instituta matematiki, 2020, no. 3, 153-166

[11] Agmon S., Nirenberg L., Protter M.H., “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Communications on Pure and Appl. Math., 1953., 455-470 | DOI | Zbl

[12] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, ZhVM i MF, 4:6 (1965), 1006-1024

[13] Salokhitdinov M. S., “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka smeshanno-sostavnogo tipa”, Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, Fan, Tashkent, 1986, 3-16

[14] Fikhtingolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1970, 556 pp.

[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i Tekhnika, Minsk, 1987, 668 pp.