Mots-clés : inverse coefficient problem, existence, Volterra equation.
@article{VKAM_2021_34_1_a0,
author = {B. S. Ablabekov and A. K. Goroev},
title = {On the definition of a time-dependent lower coefficient in a third-order hyperbolic equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {9--18},
year = {2021},
volume = {34},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a0/}
}
TY - JOUR AU - B. S. Ablabekov AU - A. K. Goroev TI - On the definition of a time-dependent lower coefficient in a third-order hyperbolic equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2021 SP - 9 EP - 18 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a0/ LA - ru ID - VKAM_2021_34_1_a0 ER -
%0 Journal Article %A B. S. Ablabekov %A A. K. Goroev %T On the definition of a time-dependent lower coefficient in a third-order hyperbolic equation %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2021 %P 9-18 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a0/ %G ru %F VKAM_2021_34_1_a0
B. S. Ablabekov; A. K. Goroev. On the definition of a time-dependent lower coefficient in a third-order hyperbolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 34 (2021) no. 1, pp. 9-18. http://geodesic.mathdoc.fr/item/VKAM_2021_34_1_a0/
[1] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, PMM, 24:5 (1960), 852-864
[2] Hallaire M., “L’eau et la productions vegetable”, Institut National de la Recherche Agronomique, 9 (1964)
[3] Chudnovsky A. F., Thermophysics of the soil, Moscow, Nauka, 1976, 352 pp.
[4] Dzektser E. S., “Equation of motion of underground water with a free surface in multilayer media”, Dokl. Akad. Nauk SSSR, 220:3 (1975), 540–543
[5] Rudenko O. V., Soluyan S. I., Theoretical Principles of Nonlinear Acoustics, Moscow, Nauka, 1975
[6] Ablabekov B. S.,Asanov A. R., Kurmanbaeva A. K., “Inverse problems for equation of the third order equations”, Ilim, Bishkek, 2011, 156 pp.
[7] Ablabekov B. S., Joroev A. K., “O razreshimosti zadachi Cauchy dlja hyperbolicheskogo uravnenija”, Evrazijskoe Nauchnoe Obedinenie, 1:5(51) (2019), 1-4
[8] Ablabekov B. S., Inverse problems for pseudoparabolic Equations, Ilim, Bishkek, 2001, 183 pp.
[9] Zikirov O. S., “O kraevykh zadachakh dlya giperbolicheskogo uravneniya tret'ego poryadka”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk, 9:1 (2007), 45–48 | MR
[10] Zikirov O. S., “Local and nonlocal boundary-value problems for third-orderhyperbolic equations”, Journal of Mathematical Sciences, 175:1 (2011), 104-123
[11] Denisov A. M., “Integro-functional equations in the inverse source problem for the wave equation”, Differ. Equat., 42:9 (2006), 1221–1232 | MR
[12] Romanov V. G., Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987
[13] Romanov V. G., Ustoychivost' v obratnykh zadachakh, Nauchnyy mir, Moskva, 2005, 296 pp.