A mathematical model with the generalized mckendrick--von foerster equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 71-77
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose a generalization of the mathematical model of a biological process that characterizes the dynamics of the population size, taking into account the change in age x for a fixed time t and changes in the number of individuals in different periods of time for a fixed x. A nonlocal boundary value problem with an integral condition is considered. The theorem of existence and uniqueness of the problem is proved.
Keywords:
fractional differentiation operator, Rieman-Liouville operator, McKendrick–von Foerster equation.
@article{VKAM_2020_33_4_a5,
author = {F. M. Losanova},
title = {A mathematical model with the generalized mckendrick--von foerster equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {71--77},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a5/}
}
TY - JOUR AU - F. M. Losanova TI - A mathematical model with the generalized mckendrick--von foerster equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 71 EP - 77 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a5/ LA - ru ID - VKAM_2020_33_4_a5 ER -
F. M. Losanova. A mathematical model with the generalized mckendrick--von foerster equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 71-77. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a5/