Modeling of electrodynamic processes in self-organization of fractal-convective cloud structures
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a model of fractal-dynamic process of occurrence of large potentials on the crystallization front in the self-organization of convective cloud structures, which takes into account the fractality of the cloud environment. The solution of the model equation is found in the analytical form. With the help of numerical calculations demonstrate the dependence of the potential difference from the fractality of environment and the dependence of the level of the fractal of the radius of the particle.
Keywords: potential, droplet crystallization, fractal medium, mathematical model.
@article{VKAM_2020_33_4_a4,
     author = {T. S. Kumykov},
     title = {Modeling of electrodynamic processes in self-organization of fractal-convective cloud structures},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {63--70},
     year = {2020},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a4/}
}
TY  - JOUR
AU  - T. S. Kumykov
TI  - Modeling of electrodynamic processes in self-organization of fractal-convective cloud structures
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 63
EP  - 70
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a4/
LA  - ru
ID  - VKAM_2020_33_4_a4
ER  - 
%0 Journal Article
%A T. S. Kumykov
%T Modeling of electrodynamic processes in self-organization of fractal-convective cloud structures
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 63-70
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a4/
%G ru
%F VKAM_2020_33_4_a4
T. S. Kumykov. Modeling of electrodynamic processes in self-organization of fractal-convective cloud structures. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 63-70. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a4/