Non-commutative phase space landau problem in the presence of a minimal length
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 188-198
Voir la notice de l'article provenant de la source Math-Net.Ru
The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space.
Keywords:
Landau problem, non-commutative phase space, minimal length, Nikiforov-Uvarov method, hypergeometric functions.
@article{VKAM_2020_33_4_a15,
author = {F. A. Dossa and J. T. Koumagnon and J. V. Hounguevou and G. Y. H. Avossevou},
title = {Non-commutative phase space landau problem in the presence of a minimal length},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {188--198},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/}
}
TY - JOUR AU - F. A. Dossa AU - J. T. Koumagnon AU - J. V. Hounguevou AU - G. Y. H. Avossevou TI - Non-commutative phase space landau problem in the presence of a minimal length JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 188 EP - 198 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/ LA - ru ID - VKAM_2020_33_4_a15 ER -
%0 Journal Article %A F. A. Dossa %A J. T. Koumagnon %A J. V. Hounguevou %A G. Y. H. Avossevou %T Non-commutative phase space landau problem in the presence of a minimal length %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 188-198 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/ %G ru %F VKAM_2020_33_4_a15
F. A. Dossa; J. T. Koumagnon; J. V. Hounguevou; G. Y. H. Avossevou. Non-commutative phase space landau problem in the presence of a minimal length. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 188-198. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/