Non-commutative phase space landau problem in the presence of a minimal length
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 188-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space.
Keywords: Landau problem, non-commutative phase space, minimal length, Nikiforov-Uvarov method, hypergeometric functions.
@article{VKAM_2020_33_4_a15,
     author = {F. A. Dossa and J. T. Koumagnon and J. V. Hounguevou and G. Y. H. Avossevou},
     title = {Non-commutative phase space landau problem in the presence of a minimal length},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {188--198},
     year = {2020},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/}
}
TY  - JOUR
AU  - F. A. Dossa
AU  - J. T. Koumagnon
AU  - J. V. Hounguevou
AU  - G. Y. H. Avossevou
TI  - Non-commutative phase space landau problem in the presence of a minimal length
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 188
EP  - 198
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/
LA  - ru
ID  - VKAM_2020_33_4_a15
ER  - 
%0 Journal Article
%A F. A. Dossa
%A J. T. Koumagnon
%A J. V. Hounguevou
%A G. Y. H. Avossevou
%T Non-commutative phase space landau problem in the presence of a minimal length
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 188-198
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/
%G ru
%F VKAM_2020_33_4_a15
F. A. Dossa; J. T. Koumagnon; J. V. Hounguevou; G. Y. H. Avossevou. Non-commutative phase space landau problem in the presence of a minimal length. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 188-198. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/

[1] Jackiw R., “Physical instances of noncommuting coordinates”, Nucl. Phys. Proc. Suppl., 108 (2002), 30-36 | DOI | MR | Zbl

[2] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38 | DOI | MR | Zbl

[3] Connes A., Noncommutative Geometry, Academic Press, San Diego, 1994 | MR | Zbl

[4] Dunne G. V., Jackiw R., Trugenberger C. A., “Topological' (Chern-Simons) quantum mechanics”, Phys. Rev. D, 41 (1990) | DOI | MR

[5] Madore J., An Introduction to noncommutative differential Geometry and Physical Application, Cambridge University Press, 2000 | MR

[6] J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, “Galilean-invariant (2+1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry”, Annals Phys., 260 (1997), hep-th/9612017 | DOI | MR

[7] Bigatti D., Susskind L., “Magnetic fields, branes and noncommutative geometry”, Phys. Rev. D, 62 (2000), hep-th/9908056 | DOI | MR

[8] Duval C., Horvathy P. A., “The exotic Galilei group and the Peierls substitution”, Phys. Lett. B, 479 (2000), hep-th/0002233 | DOI | MR

[9] Chaichian M., Sheikh-Jabbari M. M., Tureanu A., “Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Phys. Rev. Lett., 86 (2001), hep-th/0010175 | DOI | MR

[10] Gamboa J., Loewe M., Rojas J. C., “Non-Commutative Quantum Mechanic”, Phys. Rev. D, 64 (2001), hep-th/0010220 | DOI | MR

[11] Nair V. P., Polychronakos A. P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), hep-th/0011172 | MR

[12] Morariu B., Polychronakos A. P., “Quantum mechanics on the non-commutative torus”, Nucl. Phys., B610 (2001), hep-th/0102157 | MR

[13] Hatzinikitas A., Smyrnakis I., “The noncommutative harmonic oscillator in more than one dimensions”, J. Math. Phys., 43 (2002), hep-th/0103074 | DOI | MR

[14] Gamboa J., Loewe M., Mendez F., Rojas J. C., “The Landau problem and noncommutative quantum mechanics”, Mod. Phys. Lett. A, 16 (2001), hep-th/0104224 | MR

[15] Bellucci S., Nersessian A., Sochichiu C., “Two phases of the non-commutative quantum mechanics”, Phys. Lett. B, 522 (2001), hep-th/0106138 | DOI | MR

[16] Smailagic A., Spallucci E., “Isotropic representation of the noncommutative 2D harmonic oscillator”, Phys. Rev. D, 65 (2002), hep-th/0108216 | DOI | MR

[17] Smailagic A., Spallucci E., “Noncommutative 3D harmonic oscillator”, J. Phys. A, 35 (2002), hep-th/0205242 | DOI | MR

[18] Kempf A., Mangano G., Mann Robert B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108 | DOI | MR

[19] Hinrichsen H., Kempf A., “Maximal localization in the presence of minimal uncertainties in positions and in momenta”, J. Math. Phys., 37 (1996), 2121-2137 | DOI | MR | Zbl

[20] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993) | DOI | MR

[21] Chang L. N., Minic D., Okamura N., Takeuchi T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65 (2002), 125027 | DOI | MR

[22] Dadic I., Jonke L., Meljanac S., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67 (2003), 087701 | DOI

[23] Hassanabadi H., Maghsoodi E., Ikot Akpan N., Zarrinkamar S., “Minimal Length Schrödinger Equation with Harmonic Potentialin the Presence of a Magnetic Field”, Advances in High Energy Physics, 2013 (2013), 923686 | DOI | MR | Zbl

[24] Nouicer K., “Pauli-Hamiltonian in the presence of minimal lengths”, J. Math. Phys., 47 (2006), 122102 | DOI | MR | Zbl

[25] Lawson L. M, “Minimal and maximal lengths from position-dependent non-commutativity”, J. Phys. A: Math. Theor., 53 (2020), 115303 | DOI

[26] Nikiforov A. F., Uvarov V. B., Special Functions of Mathematical Physics, Birkhäuser, Basel, Switzerland, 1988 | MR | Zbl

[27] Li K., Cao X-H., Wang D-Y., “Heisenberg algebra for noncommutative Landau problem”, Chin. Phys., 15 (2006), 1009-1963 | DOI

[28] Yu X-M., Li K., “Non-Commutative Fock-Darwin System and Magnetic Field Limits”, Chin. Phys. Lett, 1980:25 (2008)

[29] Govaerts J., Hounkonnou M. N., Mweene H. V., J. Phys. A: Math. Theor., 42 (2009), 485209 | DOI | MR | Zbl

[30] Falaye B. J., Oyewumi K. J., Abbas M., “Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov-Uvarov method”, Chin. Phys. B, 22 (2013), 110301 | DOI