@article{VKAM_2020_33_4_a15,
author = {F. A. Dossa and J. T. Koumagnon and J. V. Hounguevou and G. Y. H. Avossevou},
title = {Non-commutative phase space landau problem in the presence of a minimal length},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {188--198},
year = {2020},
volume = {33},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/}
}
TY - JOUR AU - F. A. Dossa AU - J. T. Koumagnon AU - J. V. Hounguevou AU - G. Y. H. Avossevou TI - Non-commutative phase space landau problem in the presence of a minimal length JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 188 EP - 198 VL - 33 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/ LA - ru ID - VKAM_2020_33_4_a15 ER -
%0 Journal Article %A F. A. Dossa %A J. T. Koumagnon %A J. V. Hounguevou %A G. Y. H. Avossevou %T Non-commutative phase space landau problem in the presence of a minimal length %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 188-198 %V 33 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/ %G ru %F VKAM_2020_33_4_a15
F. A. Dossa; J. T. Koumagnon; J. V. Hounguevou; G. Y. H. Avossevou. Non-commutative phase space landau problem in the presence of a minimal length. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 188-198. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a15/
[1] Jackiw R., “Physical instances of noncommuting coordinates”, Nucl. Phys. Proc. Suppl., 108 (2002), 30-36 | DOI | MR | Zbl
[2] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38 | DOI | MR | Zbl
[3] Connes A., Noncommutative Geometry, Academic Press, San Diego, 1994 | MR | Zbl
[4] Dunne G. V., Jackiw R., Trugenberger C. A., “Topological' (Chern-Simons) quantum mechanics”, Phys. Rev. D, 41 (1990) | DOI | MR
[5] Madore J., An Introduction to noncommutative differential Geometry and Physical Application, Cambridge University Press, 2000 | MR
[6] J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, “Galilean-invariant (2+1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry”, Annals Phys., 260 (1997), hep-th/9612017 | DOI | MR
[7] Bigatti D., Susskind L., “Magnetic fields, branes and noncommutative geometry”, Phys. Rev. D, 62 (2000), hep-th/9908056 | DOI | MR
[8] Duval C., Horvathy P. A., “The exotic Galilei group and the Peierls substitution”, Phys. Lett. B, 479 (2000), hep-th/0002233 | DOI | MR
[9] Chaichian M., Sheikh-Jabbari M. M., Tureanu A., “Hydrogen atom spectrum and the Lamb shift in noncommutative QED”, Phys. Rev. Lett., 86 (2001), hep-th/0010175 | DOI | MR
[10] Gamboa J., Loewe M., Rojas J. C., “Non-Commutative Quantum Mechanic”, Phys. Rev. D, 64 (2001), hep-th/0010220 | DOI | MR
[11] Nair V. P., Polychronakos A. P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), hep-th/0011172 | MR
[12] Morariu B., Polychronakos A. P., “Quantum mechanics on the non-commutative torus”, Nucl. Phys., B610 (2001), hep-th/0102157 | MR
[13] Hatzinikitas A., Smyrnakis I., “The noncommutative harmonic oscillator in more than one dimensions”, J. Math. Phys., 43 (2002), hep-th/0103074 | DOI | MR
[14] Gamboa J., Loewe M., Mendez F., Rojas J. C., “The Landau problem and noncommutative quantum mechanics”, Mod. Phys. Lett. A, 16 (2001), hep-th/0104224 | MR
[15] Bellucci S., Nersessian A., Sochichiu C., “Two phases of the non-commutative quantum mechanics”, Phys. Lett. B, 522 (2001), hep-th/0106138 | DOI | MR
[16] Smailagic A., Spallucci E., “Isotropic representation of the noncommutative 2D harmonic oscillator”, Phys. Rev. D, 65 (2002), hep-th/0108216 | DOI | MR
[17] Smailagic A., Spallucci E., “Noncommutative 3D harmonic oscillator”, J. Phys. A, 35 (2002), hep-th/0205242 | DOI | MR
[18] Kempf A., Mangano G., Mann Robert B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108 | DOI | MR
[19] Hinrichsen H., Kempf A., “Maximal localization in the presence of minimal uncertainties in positions and in momenta”, J. Math. Phys., 37 (1996), 2121-2137 | DOI | MR | Zbl
[20] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993) | DOI | MR
[21] Chang L. N., Minic D., Okamura N., Takeuchi T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65 (2002), 125027 | DOI | MR
[22] Dadic I., Jonke L., Meljanac S., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67 (2003), 087701 | DOI
[23] Hassanabadi H., Maghsoodi E., Ikot Akpan N., Zarrinkamar S., “Minimal Length Schrödinger Equation with Harmonic Potentialin the Presence of a Magnetic Field”, Advances in High Energy Physics, 2013 (2013), 923686 | DOI | MR | Zbl
[24] Nouicer K., “Pauli-Hamiltonian in the presence of minimal lengths”, J. Math. Phys., 47 (2006), 122102 | DOI | MR | Zbl
[25] Lawson L. M, “Minimal and maximal lengths from position-dependent non-commutativity”, J. Phys. A: Math. Theor., 53 (2020), 115303 | DOI
[26] Nikiforov A. F., Uvarov V. B., Special Functions of Mathematical Physics, Birkhäuser, Basel, Switzerland, 1988 | MR | Zbl
[27] Li K., Cao X-H., Wang D-Y., “Heisenberg algebra for noncommutative Landau problem”, Chin. Phys., 15 (2006), 1009-1963 | DOI
[28] Yu X-M., Li K., “Non-Commutative Fock-Darwin System and Magnetic Field Limits”, Chin. Phys. Lett, 1980:25 (2008)
[29] Govaerts J., Hounkonnou M. N., Mweene H. V., J. Phys. A: Math. Theor., 42 (2009), 485209 | DOI | MR | Zbl
[30] Falaye B. J., Oyewumi K. J., Abbas M., “Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov-Uvarov method”, Chin. Phys. B, 22 (2013), 110301 | DOI